GNU Parallel Book

Learn GNU Parallel in 5 minutes
You just need to run commands in parallel. You do not care about fine tuning.

To get going please run this to make some example files:
IT your system does not have "seq®, we will use "jot" instead
if ! seq 1 2>/dev/null; then alias seg=jot; FTi

seq 5 | parallel "seq {} > example.{}"

Input sources

GNU parallel reads values from input sources. One input source is the command line. The values are
put after ::::

parallel echo ::: 1 2 345

This makes it easy to run the same program on some files:

parallel wc ::: example.*

If you give multiple :::s, GNU parallel will make all combinations:

parallel wc ::: -1 -c ::: example.*

GNU parallel can also read the values from stdin (standard input):

seq 5 | parallel echo

Building the command line

The command line is put before the :::. It can contain contain a command and options for the
command:

parallel wc -1 :-:: example.*

The command can contain multiple programs. Just remember to quote characters that are interpreted
by the shell (such as ;):

parallel echo counting lines";" wc -1 :-:: example.*

The value will normally be appended to the command, but can be placed anywhere by using the
replacement string {}:

parallel echo counting {} ;" wc -1 {} :-:: example.*

When using multiple input sources you use the positional replacement strings:

parallel echo count {1} in {2}";" wc {1} {2} ::: -1 -c ::: example.*

Controlling the output

The output will be printed as soon as the command completes. This means the output may come in a
different order than the input:

parallel sleep {}";" echo {} done ::: 54321

You can force GNU parallel to print in the order of the values with --keep-order/-k. This will still run
the commands in parallel. The output of the later jobs will be delayed, until the earlier jobs are printed:

Page 1

GNU Parallel Book

parallel -k sleep {}";" echo {} done ::: 54321

Controlling the execution

If your jobs are compute intensive, you will most likely run one job for each core in the system. This is
the default for GNU parallel.

But sometimes you want more jobs running. You control the number of job slots with -j. Give -j the
number of jobs to run in parallel:

parallel -j50 \
wget http://ftpmirror._.gnu.org/parallel/parallel-{1}{2}22_tar.bz2 \
11 2012 2013 2014 2015 2016 \
122 01 02 03 04 05 06 07 08 09 10 11 12

Pipe mode

GNU parallel can also pass blocks of data to commands on stdin (standard input):

seq 1000000 | parallel --pipe wc

This can be used to process big text files. By default GNU parallel splits on \n (newline) and passes a
block of around 1 MB to each job.

That's it

You have now learned the basic use of GNU parallel. This will probably cover most cases of your use
of GNU parallel.

The rest of this document will go into more details on each of the sections and cover special use

cases.

Learn GNU Parallel in an hour
In this part we will dive deeper into what you learned in the first 5 minutes.

To get going please run this to make some example files:

seq 6 > seq6
seq 6 -1 1 > seq-6

Input sources

On top of the command line, input sources can also be stdin (standard input or '-"), files and fifos and

parallel echo Dicel={1} Dice2={2} ::: 123456 ::: 654321
parallel echo Dicel={1} Dice2={2} ::: <(seq 6) ::: <(seq 6 -1 1)
parallel echo Dicel={1} Dice2={2} :::: seq6 seq-6

parallel -a seq6 -a seq-6 echo Dicel={1} Dice2={2}

parallel -a seq6 echo Dicel={1} Dice2={2} :::: seq-6

parallel echo Dicel={1} Dice2={2} ::: 123 456 :::: seq-6

cat seq-6 | parallel echo Dicel={1} Dice2={2} :::: seqb6 -

If stdin (standard input) is the only input source, you do not need the '-":

cat seq6 | parallel echo Dicel={1}

You can link multiple input sources with :::+ and ::::+:

parallel echo {1}={2} :z- 1L 11 111 IV V VI :::+ 123456
parallel echo {1}={2} :z- 1 11 111 IV V VI ::::+ seq6

Page 2

GNU Parallel Book

Building the command line
The command
The command can be a script, a binary or a Bash function if the function is exported using export -f:

Works only in Bash

my_func(Q) {
echo in my_ func "$1"

}

export -f my_ func
parallel my_func :-:: 1 2 3

Copying environment
env_parallel

The replacement strings
GNU parallel has some replacement strings to make it easier

Controlling the output
parset
parset is a shell function to get the output from GNU parallel into shell variables.

parset is fully supported for Bash/Zsh/Ksh and partially supported for ash/dash. | will assume you
run Bash.

To activate parset you have to run:

- ~which env_parallel _bash”

(replace bash with your shell's name).

Then you can run:

parset a,b,c seq ::: 456
echo ""$c"

or:
parset "a b c" seq ::: 456
echo "$c"

If you give a single variable, this will become an array:
parset arr seq ::: 45 6
echo "${arr[1]}"
parset has one limitation: If it reads from a pipe, the output will be lost.
echo This will not work | parset myarr echo
echo Nothing: "${myarr[*]}"
Instead you can do this

echo This will work > tempfile
parset myarr echo < tempfile
echo ${myarr[*]1}

sgl cvs

Page 3

GNU Parallel Book

Controlling the execution
--dryrun -v

Remote execution
For this section you must have ssh access with no password to 2 servers: $serverl and $server2.

serverl=server._example.com
server2=server2.example.net

So you must be able to do this:

ssh $serverl echo works

ssh $server2 echo works
It can be setup by running 'ssh-keygen -t dsa; ssh-copy-id $serverl' and using an empty passphrase.
Or you can use ssh-agent.

Workers
--transferfile
--transferfile flename will transfer filename to the worker. filename can contain a replacement string:

parallel -S $serverl,$server2 —-transferfile {} wc ::: example.*
parallel -S $serverl,$server2 —--transferfile {2} \
echo count {1} in {2}";" wc {1} {2} ::: -1 -c ::: example.*

A shorthand for --transferfile {} is --transfer.

--return
--cleanup
A shorthand for --transfer --return {} --cleanup is --trc {}.

Pipe mode
--pipepart
That's it
Advanced usage
parset fifo, cmd substtition, arrayelements, array with var names and cmds, env_parset

env_parallel
Interfacing with R.
Interfacing with JSON/jq

4dI() { board="$(printf -- '%s' "${1}" | cut -d /' -f4)" thread="$(printf -- '%s' "${1}" | cut -d '/ -f6)" wget
-qO- "https://a.4cdn.org/${board}/thread/${thread}.json" | jq -r ' .posts | map(select(.tim != null)) |
map((.tim | tostring) + .ext) | map("https://i.4cdn.org/"${board}"/"+.)[] ' | parallel --gnu -j 0 wget -nv }

Interfacing with XML/?
Interfacing with HTML/?

Controlling the execution
--termseq

Remote execution
seq 10 | parallel --sshlogin 'ssh -i "key.pem" a@b.com' echo

Page 4

GNU Parallel Book

seq 10 | PARALLLEL_SSH='ssh -i "key.pem" parallel --sshlogin a@b.com echo

seq 10 | parallel --ssh 'ssh -i "key.pem™ --sshlogin a@b.com echo
ssh-agent
The sshlogin file format

Check if servers are up

Page 5

