My Project  debian-1:4.1.1-p2+ds-4build2
Macros | Functions
ringgb.cc File Reference
#include "kernel/mod2.h"
#include "kernel/GBEngine/kutil.h"
#include "kernel/structs.h"
#include "omalloc/omalloc.h"
#include "kernel/polys.h"
#include "polys/monomials/p_polys.h"
#include "kernel/ideals.h"
#include "kernel/GBEngine/kstd1.h"
#include "kernel/GBEngine/khstd.h"
#include "polys/kbuckets.h"
#include "polys/weight.h"
#include "misc/intvec.h"
#include "polys/nc/nc.h"
#include "kernel/GBEngine/ringgb.h"

Go to the source code of this file.

Macros

#define NO_BUCKETS
 

Functions

poly reduce_poly_fct (poly p, ring r)
 
int indexOf2 (number n)
 
BOOLEAN ring2toM_GetLeadTerms (const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
 
void printPolyMsg (const char *start, poly f, const char *end)
 
poly spolyRing2toM (poly f, poly g, ring r)
 
poly ringRedNF (poly f, ideal G, ring r)
 
int findRingSolver (poly rside, ideal G, ring r)
 
poly plain_spoly (poly f, poly g)
 
poly plain_zero_spoly (poly h)
 
poly ringNF (poly f, ideal G, ring r)
 
int testGB (ideal I, ideal GI)
 

Macro Definition Documentation

◆ NO_BUCKETS

#define NO_BUCKETS

Definition at line 8 of file ringgb.cc.

Function Documentation

◆ findRingSolver()

int findRingSolver ( poly  rside,
ideal  G,
ring  r 
)

Definition at line 153 of file ringgb.cc.

154 {
155  if (rside == NULL) return -1;
156  int i;
157 // int iO2rside = indexOf2(pGetCoeff(rside));
158  for (i = 0; i < IDELEMS(G); i++)
159  {
160  if // (indexOf2(pGetCoeff(G->m[i])) <= iO2rside && / should not be necessary any more
161  (p_LmDivisibleBy(G->m[i], rside, r))
162  {
163  return i;
164  }
165  }
166  return -1;
167 }

◆ indexOf2()

int indexOf2 ( number  n)

Definition at line 39 of file ringgb.cc.

40 {
41  long test = (long) n;
42  int i = 0;
43  while (test%2 == 0)
44  {
45  i++;
46  test = test / 2;
47  }
48  return i;
49 }

◆ plain_spoly()

poly plain_spoly ( poly  f,
poly  g 
)

Definition at line 169 of file ringgb.cc.

170 {
171  number cf = nCopy(pGetCoeff(f)), cg = nCopy(pGetCoeff(g));
172  (void)ksCheckCoeff(&cf, &cg, currRing->cf); // gcd and zero divisors
173  poly fm, gm;
174  k_GetLeadTerms(f, g, currRing, fm, gm, currRing);
175  pSetCoeff0(fm, cg);
176  pSetCoeff0(gm, cf); // and now, m1 * LT(p1) == m2 * LT(p2)
177  poly sp = pSub(ppMult_mm(f, fm), ppMult_mm(g, gm));
178  pDelete(&fm);
179  pDelete(&gm);
180  return(sp);
181 }

◆ plain_zero_spoly()

poly plain_zero_spoly ( poly  h)

Definition at line 186 of file ringgb.cc.

187 {
188  poly p = NULL;
189  number gcd = n_Gcd((number) 0, pGetCoeff(h), currRing->cf);
190  if (!n_IsOne( gcd, currRing->cf ))
191  {
192  number tmp=n_Ann(gcd,currRing->cf);
193  p = p_Copy(h->next, currRing);
194  p = __p_Mult_nn(p, tmp, currRing);
195  n_Delete(&tmp,currRing->cf);
196  }
197  return p;
198 }

◆ printPolyMsg()

void printPolyMsg ( const char *  start,
poly  f,
const char *  end 
)

Definition at line 97 of file ringgb.cc.

98 {
99  PrintS(start);
100  wrp(f);
101  PrintS(end);
102 }

◆ reduce_poly_fct()

poly reduce_poly_fct ( poly  p,
ring  r 
)

Definition at line 30 of file ringgb.cc.

31 {
32  return kFindZeroPoly(p, r, r);
33 }

◆ ring2toM_GetLeadTerms()

BOOLEAN ring2toM_GetLeadTerms ( const poly  p1,
const poly  p2,
const ring  p_r,
poly &  m1,
poly &  m2,
const ring  m_r 
)

Definition at line 58 of file ringgb.cc.

60 {
61  int i;
62  int x;
63  m1 = p_Init(m_r);
64  m2 = p_Init(m_r);
65 
66  for (i = p_r->N; i; i--)
67  {
68  x = p_GetExpDiff(p1, p2, i, p_r);
69  if (x > 0)
70  {
71  p_SetExp(m2,i,x, m_r);
72  p_SetExp(m1,i,0, m_r);
73  }
74  else
75  {
76  p_SetExp(m1,i,-x, m_r);
77  p_SetExp(m2,i,0, m_r);
78  }
79  }
80  p_Setm(m1, m_r);
81  p_Setm(m2, m_r);
82  long cp1 = (long) pGetCoeff(p1);
83  long cp2 = (long) pGetCoeff(p2);
84  if (cp1 != 0 && cp2 != 0)
85  {
86  while (cp1%2 == 0 && cp2%2 == 0)
87  {
88  cp1 = cp1 / 2;
89  cp2 = cp2 / 2;
90  }
91  }
92  p_SetCoeff(m1, (number) cp2, m_r);
93  p_SetCoeff(m2, (number) cp1, m_r);
94  return TRUE;
95 }

◆ ringNF()

poly ringNF ( poly  f,
ideal  G,
ring  r 
)

Definition at line 200 of file ringgb.cc.

201 {
202  // If f = 0, then normal form is also 0
203  if (f == NULL) { return NULL; }
204  poly tmp = NULL;
205  poly h = pCopy(f);
206  int i = findRingSolver(h, G, r);
207  int c = 1;
208  while (h != NULL && i >= 0) {
209 // Print("%d-step NF - h:", c);
210 // wrp(h);
211 // PrintS(" ");
212 // PrintS("G->m[i]:");
213 // wrp(G->m[i]);
214 // PrintLn();
215  tmp = h;
216  h = plain_spoly(h, G->m[i]);
217  pDelete(&tmp);
218 // PrintS("=> h=");
219 // wrp(h);
220 // PrintLn();
221  i = findRingSolver(h, G, r);
222  c++;
223  }
224  return h;
225 }

◆ ringRedNF()

poly ringRedNF ( poly  f,
ideal  G,
ring  r 
)

Definition at line 118 of file ringgb.cc.

119 {
120  // If f = 0, then normal form is also 0
121  if (f == NULL) { return NULL; }
122  poly h = NULL;
123  poly g = pCopy(f);
124  int c = 0;
125  while (g != NULL)
126  {
127  Print("%d-step RedNF - g=", c);
128  wrp(g);
129  PrintS(" | h=");
130  wrp(h);
131  PrintLn();
132  g = ringNF(g, G, r);
133  if (g != NULL) {
134  h = pAdd(h, pHead(g));
135  pLmDelete(&g);
136  }
137  c++;
138  }
139  return h;
140 }

◆ spolyRing2toM()

poly spolyRing2toM ( poly  f,
poly  g,
ring  r 
)

Definition at line 104 of file ringgb.cc.

105 {
106  poly m1 = NULL;
107  poly m2 = NULL;
108  ring2toM_GetLeadTerms(f, g, r, m1, m2, r);
109  // printPolyMsg("spoly: m1=", m1, " | ");
110  // printPolyMsg("m2=", m2, "");
111  // PrintLn();
112  poly sp = pSub(p_Mult_mm(f, m1, r), pp_Mult_mm(g, m2, r));
113  pDelete(&m1);
114  pDelete(&m2);
115  return(sp);
116 }

◆ testGB()

int testGB ( ideal  I,
ideal  GI 
)

Definition at line 227 of file ringgb.cc.

227  {
228  poly f, g, h, nf;
229  int i = 0;
230  int j = 0;
231  PrintS("I included?");
232  for (i = 0; i < IDELEMS(I); i++) {
233  if (ringNF(I->m[i], GI, currRing) != NULL) {
234  PrintS("Not reduced to zero from I: ");
235  wrp(I->m[i]);
236  PrintS(" --> ");
237  wrp(ringNF(I->m[i], GI, currRing));
238  PrintLn();
239  return(0);
240  }
241  PrintS("-");
242  }
243  PrintS(" Yes!\nspoly --> 0?");
244  for (i = 0; i < IDELEMS(GI); i++)
245  {
246  for (j = i + 1; j < IDELEMS(GI); j++)
247  {
248  f = pCopy(GI->m[i]);
249  g = pCopy(GI->m[j]);
250  h = plain_spoly(f, g);
251  nf = ringNF(h, GI, currRing);
252  if (nf != NULL)
253  {
254  PrintS("spoly(");
255  wrp(GI->m[i]);
256  PrintS(", ");
257  wrp(GI->m[j]);
258  PrintS(") = ");
259  wrp(h);
260  PrintS(" --> ");
261  wrp(nf);
262  PrintLn();
263  return(0);
264  }
265  pDelete(&f);
266  pDelete(&g);
267  pDelete(&h);
268  pDelete(&nf);
269  PrintS("-");
270  }
271  }
272  if (!(rField_is_Domain(currRing)))
273  {
274  PrintS(" Yes!\nzero-spoly --> 0?");
275  for (i = 0; i < IDELEMS(GI); i++)
276  {
277  f = plain_zero_spoly(GI->m[i]);
278  nf = ringNF(f, GI, currRing);
279  if (nf != NULL) {
280  PrintS("spoly(");
281  wrp(GI->m[i]);
282  PrintS(", ");
283  wrp(0);
284  PrintS(") = ");
285  wrp(h);
286  PrintS(" --> ");
287  wrp(nf);
288  PrintLn();
289  return(0);
290  }
291  pDelete(&f);
292  pDelete(&nf);
293  PrintS("-");
294  }
295  }
296  PrintS(" Yes!");
297  PrintLn();
298  return(1);
299 }
test
CanonicalForm test
Definition: cfModGcd.cc:4037
ksCheckCoeff
int ksCheckCoeff(number *a, number *b)
kFindZeroPoly
poly kFindZeroPoly(poly input_p, ring leadRing, ring tailRing)
Definition: kstd2.cc:324
j
int j
Definition: facHensel.cc:105
f
FILE * f
Definition: checklibs.c:9
x
Variable x
Definition: cfModGcd.cc:4023
ppMult_mm
#define ppMult_mm(p, m)
Definition: polys.h:188
rField_is_Domain
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:480
p_Mult_mm
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:997
cf
CanonicalForm cf
Definition: cfModGcd.cc:4024
g
g
Definition: cfModGcd.cc:4031
n_Delete
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:456
findRingSolver
int findRingSolver(poly rside, ideal G, ring r)
Definition: ringgb.cc:153
pp_Mult_mm
static poly pp_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:987
pDelete
#define pDelete(p_ptr)
Definition: polys.h:173
n_IsOne
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:469
__p_Mult_nn
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:927
p_LmDivisibleBy
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1815
nf
Definition: gnumpfl.cc:27
p_SetExp
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
p_Copy
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
currRing
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
TRUE
#define TRUE
Definition: auxiliary.h:98
i
int i
Definition: cfEzgcd.cc:125
n_Ann
static FORCE_INLINE number n_Ann(number a, const coeffs r)
if r is a ring with zero divisors, return an annihilator!=0 of b otherwise return NULL
Definition: coeffs.h:702
ring2toM_GetLeadTerms
BOOLEAN ring2toM_GetLeadTerms(const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
Definition: ringgb.cc:58
PrintS
void PrintS(const char *s)
Definition: reporter.cc:284
h
static Poly * h
Definition: janet.cc:972
k_GetLeadTerms
KINLINE BOOLEAN k_GetLeadTerms(const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
Definition: kInline.h:939
cg
CanonicalForm cg
Definition: cfModGcd.cc:4024
p_Init
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1266
pAdd
#define pAdd(p, q)
Definition: polys.h:190
plain_spoly
poly plain_spoly(poly f, poly g)
Definition: ringgb.cc:169
Print
#define Print
Definition: emacs.cc:80
p_SetCoeff
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
pSetCoeff0
#define pSetCoeff0(p, n)
Definition: monomials.h:66
n_Gcd
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
Definition: coeffs.h:687
p_GetExpDiff
static long p_GetExpDiff(poly p1, poly p2, int i, ring r)
Definition: p_polys.h:635
NULL
#define NULL
Definition: omList.c:10
pLmDelete
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition: polys.h:76
p_Setm
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
gcd
int gcd(int a, int b)
Definition: walkSupport.cc:836
p
int p
Definition: cfModGcd.cc:4019
pCopy
#define pCopy(p)
return a copy of the poly
Definition: polys.h:172
ringNF
poly ringNF(poly f, ideal G, ring r)
Definition: ringgb.cc:200
IDELEMS
#define IDELEMS(i)
Definition: simpleideals.h:26
plain_zero_spoly
poly plain_zero_spoly(poly h)
Definition: ringgb.cc:186
pHead
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
pGetCoeff
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:51
PrintLn
void PrintLn()
Definition: reporter.cc:310
G
static TreeM * G
Definition: janet.cc:32
pSub
#define pSub(a, b)
Definition: polys.h:273
nCopy
#define nCopy(n)
Definition: numbers.h:16
wrp
void wrp(poly p)
Definition: polys.h:296