 |
My Project
debian-1:4.1.1-p2+ds-4build2
|
Definition at line 2330 of file sparsmat.cc.
◆ sparse_number_mat()
sparse_number_mat::sparse_number_mat |
( |
ideal |
smat, |
|
|
const ring |
R |
|
) |
| |
◆ ~sparse_number_mat()
sparse_number_mat::~sparse_number_mat |
( |
| ) |
|
◆ smAllDel()
void sparse_number_mat::smAllDel |
( |
| ) |
|
|
private |
◆ smColToRow()
void sparse_number_mat::smColToRow |
( |
| ) |
|
|
private |
◆ smGElim()
void sparse_number_mat::smGElim |
( |
| ) |
|
|
private |
Definition at line 2631 of file sparsmat.cc.
2662 }
while (
b !=
NULL);
2665 if (a->pos <
b->pos)
2670 else if (a->pos >
b->pos)
2702 }
while (r !=
NULL);
◆ smIsSing()
int sparse_number_mat::smIsSing |
( |
| ) |
|
|
inline |
◆ smRealPivot()
void sparse_number_mat::smRealPivot |
( |
| ) |
|
|
private |
◆ smRes2Ideal()
ideal sparse_number_mat::smRes2Ideal |
( |
| ) |
|
◆ smRowToCol()
void sparse_number_mat::smRowToCol |
( |
| ) |
|
|
private |
◆ smSelectPR()
void sparse_number_mat::smSelectPR |
( |
| ) |
|
|
private |
◆ smSolv()
void sparse_number_mat::smSolv |
( |
| ) |
|
◆ smTriangular()
void sparse_number_mat::smTriangular |
( |
| ) |
|
◆ smZeroToredElim()
void sparse_number_mat::smZeroToredElim |
( |
| ) |
|
|
private |
◆ _R
ring sparse_number_mat::_R |
|
private |
◆ act
int sparse_number_mat::act |
|
private |
◆ crd
int sparse_number_mat::crd |
|
private |
◆ dumm
◆ m_act
◆ m_res
◆ m_row
◆ ncols
int sparse_number_mat::ncols |
|
private |
◆ nrows
int sparse_number_mat::nrows |
|
private |
◆ perm
int* sparse_number_mat::perm |
|
private |
◆ piv
◆ red
◆ rpiv
int sparse_number_mat::rpiv |
|
private |
◆ sing
int sparse_number_mat::sing |
|
private |
◆ sol
number* sparse_number_mat::sol |
|
private |
◆ tored
int sparse_number_mat::tored |
|
private |
◆ wcl
int * sparse_number_mat::wcl |
|
private |
◆ wrw
int* sparse_number_mat::wrw |
|
private |
The documentation for this class was generated from the following file:
const CanonicalForm int const CFList const Variable & y
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff 'a' is larger than 'b'; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
static smnumber sm_Poly2Smnumber(poly, const ring)
static FORCE_INLINE number n_Add(number a, number b, const coeffs r)
return the sum of 'a' and 'b', i.e., a+b
static poly sm_Smnumber2Poly(number, const ring)
void PrintS(const char *s)
#define omFreeSize(addr, size)
static void sm_NumberDelete(smnumber *, const ring R)
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
ideal idInit(int idsize, int rank)
initialise an ideal / module
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
const CanonicalForm int s
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
static smnumber smNumberCopy(smnumber)
#define omFreeBin(addr, bin)