The GNU Pascal Manual

Jan-Jaap van der Heijden,
Peter Gerwinski,
Frank Heckenbach,
Berend de Boer,
Dominik Freche,

and others

Last updated May 2002

for version 20020510 (GCC 2.95.x)

Copyright (©) 1988-2002 Free Software Foundation, Inc.

For GPC 20020510 (GCC 2.95.x)

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided also that the sections entitled “GNU General Public
License”, “The GNU Project”, “The GNU Manifesto” and “Funding for Free Software” are
included exactly as in the original, and provided that the entire resulting derived work is dis-
tributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the sections entitled “GNU General
Public License”, “The GNU Project”, “The GNU Manifesto” and “Funding for Free Software”
and this permission notice, may be included in translations approved by the Free Software
Foundation instead of in the original English.

GNU Pascal 1

GNU Pascal

This manual documents how to run, install and maintain the GNU Pascal Compiler (GPC),
as well as its new features and incompatibilities, and how to report bugs. It corresponds to GPC
20020510 (GCC 2.95.x).

The GNU Pascal Manual

Welcome to GNU Pascal . .. 3

Welcome to GNU Pascal ...

.. the free 32/64-bit Pascal compiler of the GNU Compiler Collection (GNU CC or GCC).

It combines a Pascal front-end with the proven GCC back-end for code generation and opti-
mization. Other compilers in the collection currently include compilers for the Ada, C, C++,
Objective C, Chill, FORTRAN, and Java languages. Unlike utilities such as p2c, this is a true
compiler, not just a converter.

This version of GPC corresponds to GCC version 2.95.x.
The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU Pascal

or GPC) which

combines the clarity of Pascal with powerful tools suitable for real-life programming,

supports both the Pascal standard and the Extended Pascal standard as defined by ISO,
ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),

supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Delphi
and Pascal-SC) in so far as this serves the goal of clarity and usability,

may be distributed under GNU license conditions, and

can generate code for and run on any computer for which the GNU C compiler can generate
code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to proceed

to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), a large subset

of Extended Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland
Pascal (version 7.0) with some Delphi extensions, and provides a lot of useful GNU extensions.

This manual contains

an overview of some of GPC’s most interesting features, see Chapter 1 [Highlights|, page 5,
a list of new features since the last release, see Chapter 2 [News|, page 9,

the GNU Pascal Frequently Asked Questions List, see Chapter 3 [FAQ)], page 23,
installation instructions, see Chapter 4 [Installation], page 35,

a QuickStart Guide for programmers used to the Turbo Pascal/Borland Pascal compiler,
see Chapter 5 [Borland Pascal], page 43,

a list of command-line options to invoke the compiler, see Chapter 6 [Invoking GPC],
page 63,

the Programmer’s Guide to GPC, describing the Pascal programming language in general
and GPC specifc aspects, see Chapter 7 [Programming|, page 73,

the alphabetical GPC language reference, see Chapter 8 [Referencel, page 257,

a list of keywords and operators supported by GNU Pascal, see Chapter 9 [Keywords]
page 427,

information on how to report bugs in GNU Pascal and how to get support, see Chapter 10
[Support], page 433,

the list of known bugs and things to do, also listing bugs fixed and features implemented
recently, see Chapter 11 [To Do], page 439,

some information for those who are interested in how GNU Pascal works internally, see
Chapter 12 [Internals], page 475,

a list of contributors which tells you who devloped and is maintaining GNU Pascal, see
Appendix A [Contributors]|, page 487,

the GNU General Public License which informs you about your rights and responsibilites
when using, modifying and distributing GNU Pascal, see Appendix C [Copying|, page 495,

4 The GNU Pascal Manual

e and other texts about Free Software and the GNU Project intended to answer questions
like “what is GNU?” you might have in mind now, see Appendix E [GNU], page 509.

If you are familiar with Standard Pascal (ISO 7185) programming, you can probably just
go ahead and try to compile your programs. Also, most of the ISO Extended Pascal Standard
(ISO 10206) is implemented into GNU Pascal. The Extended Pascal features still missing from
GPC are qualified module import, protected module export variables, set types with variable
bounds, structured value initializers and expressions as subrange lower bounds.

If you are a Borland Pascal programmer, you should probably start reading the QuickStart
guide from BP to GNU Pascal, see Chapter 5 [Borland Pascal|, page 43. If you are curious
about the new features GPC offers, you can get an idea in the overview of GPC highlights
(see Chapter 1 [Highlights|, page 5), and read in more detail about them in the Programmer’s
Guide to GPC (see Chapter 7 [Programming|, page 73) and in the alphabetical GPC Language
Reference (see Chapter 8 [Reference], page 257).

And, please, think about how you can contribute to the GNU Pascal project, too. Please sup-
port our work by contributing yours in form of example programs, bug reports, documentation,
or even actual improvements of the compiler.

All trademarks used in this manual are properties of their respective owners.

Chapter 1: Some of GPC’s most interesting features. 5

1

Some of GPC’s most interesting features.

The GNU Pascal Compiler (GPC) is, as the name says, the Pascal compiler of the GNU

family (see Appendix E [GNU]J, page 509). This means:

GPC is a 32/64 bit compiler,

does not have limits like the 64 kB or 640 kB limit known from certain operating systems
— even on those systems —,

runs on all operating systems supported by GNU C, including
— Linux on Intel, Alpha, S390, and all other supported types of hardware,
— the BSD family: FreeBSD, NetBSD, OpenBSD,
— DOS with 32 bits, using DJGPP or EMX,
— MS-Windows 9x/NT, using CygWin or mingw,
— 0S/2 with
EMX,
— MIPS-SGI-IRIX,
— Alpha-DEC-OSF,
— Sparc-Sun-Solaris,
— HP/UX
and more,
can act as a native or as a cross compiler between all supported systems,
produces highly optimized code for all these systems,

is Free Software (Open-Source Software) according to the GNU General Public License
(Appendix E [GNU]J, page 509, for remarks and translations),

is compatible to other GNU languages and tools such as GNU C and the GNU debugger.

The compiler supports the following language standards and quasi-standards:
ISO-7185 Pascal (see Appendix B [Resources|, page 491),
most of ISO-10206 Extended Pascal,
Borland Pascal 7.0,
parts of Borland Delphi and Pascal-SC (PXSC).

Some highlights:

From Standard Pascal: Many popular Pascal compilers claim to extend Standard Pascal
but miss these important features.

— Conformant array parameters — the standardized and comfortable way to pass arrays
of varying size to procedures and functions. [Example (conformantdemo.pas)]

— Passing local procedures as procedural parameters — with full access to all variables of
the “parent” procedure. [Example (iteratordemo.pas)]

— Automatic file buffers and standard ‘Get’ and ‘Put’ procedures. Read ahead from
files without temporary variables. [Example (filebufldemo.pas)] This allows you, for
instance, to validate numeric input from text files before reading without conversion
through strings. [Example (filebuf2demo.pas)]

— True packed records and arrays. Pack 8 Booleans into 1 byte. [Example (pack-
demo.pas)]

— Internal files. You don’t have to worry about creating temporary file names and erasing
the files later. [Example (intfiledemo.pas)]

— Global ‘goto’. (Yes, ‘goto’ has its place when it is not restricted to the current routine.)
[Example (parserdemo.pas)]

http://www.linux.org
http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org
http://www.delorie.com/djgpp/
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html
http://cygwin.com
http://www.mingw.org
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org
http://www.gnu.org/copyleft/gpl.html

The GNU Pascal Manual

Automatically set discriminants of variant records in ‘New’. [Example (variant-
demo.pas)]

Sets of arbitrary size. [Example (bigsetsdemo.pas)]

e From Extended Pascal:

Strings of arbitrary length. [Example (stringschemademo.pas)]

‘ReadStr’ and ‘WriteStr’. Read from and write to strings with the full comfort of
‘ReadLn’/‘WriteLn’. [Example (rwstringdemo.pas)]

System-independent date/time routines. [Example (datetimedemo.pas)]

Set member iteration: ‘for Chin [’A’ .. ’Z’, ’a’ .. ’z’] do ...’ [Example
(bigsetsdemo.pas)]

Set extensions (symmetric difference, ‘Card’)

Generalized ‘Succ’ and ‘Pred’ functions (foo := Succ (bar, 5);).

Complex numbers. [Example (mandelbrot.pas)] [Example (parserdemo.pas)]
Exponentiation operators (‘pow’ and ‘**’) for real and complex numbers.
Initialized variables. [Example (initvardemo.pas)]

Functions can return array or record values.

Return value variables. [Example (returnvardemo.pas)]

Modules.

Non-decimal numbers in base 2 through 36: ‘base#number’.

‘MinReal’, ‘MaxReal’, ‘EpsReal’, ‘MaxChar’ constants.

Schemata — the Pascal way to get dynamic arrays without dirty tricks. [Example
(schemademo.pas)]

Local variables may have dynamic size. [Example (dynamicarraydemo.pas)]

Array Slice Acces — access parts of an array as a smaller array, even on the left side of
an assignment [Example (arrayslicedemo.pas)]

e Compatible to Borland Pascal 7.0 with objects (BP):

Supports units, objects, ..., and makes even things like ‘absolute’ variables portable.
[Example (absdemo.pas)]

Comes with portable versions of the BP standard units with full source.

True network-transparent CRT unit: You can run your CRT applications locally or
while being logged in remotely, without any need to worry about different terminal
types. Compatible to BP’s unit, but with many extensions, such as overlapping win-
dows. [Example (crtdemo.pas)]

Fully functional GUI (X11) version of CRT (also completely network transparent).

The ‘Random’ function can produce the same sequence of pseudo-random numbers as
BP does — if you need that instead of the much more elaborate default algorithm.

Supports BP style procedural variables as well as Standard Pascal’s procedural param-
eters. [Example (procvardemo.pas)]

A ‘Ports’ unit lets you access CPU I/O ports on systems where this makes sense.
[Example (portdemo.pas)]

Special compatibility features to help migrating from BP to GPC, like a ‘GPC for BP’
unit which provides some of GPC’s features for BP, and some routines to access sets
of large memory blocks in a uniform way under GPC and BP (even in real mode).
[Example (bigmemdemo.pas)]

Comes with a BP compatible ‘binobj’ utility. [Example (binobjdemo.pas)]

e From Borland Delphi:

Chapter 1: Some of GPC’s most interesting features. 7

‘abstract’ object types and methods
‘is’ and ‘as’ operators to test object type membership
Comments with ‘//’

A ‘SetLength’ procedure for strings makes it unnecessary to use dirty tricks like as-
signments to the “zeroth character”.

‘Initialize’ and ‘Finalize’ for low-level handling of variables.

e From Pascal-SC (PXSC):

User-definable operators. Add your vectors with ‘+’.

e Carefully designed GNU extensions help you to make your real-world programs portable:

64-bit signed and unsigned integer types.

Special types guarantee compatibility to other GNU languages such as GNU C. Direc-
tives like ‘{$L foo.c} make it easy to maintain projects written in multiple languages,
e.g., including code written in other languages into Pascal programs [Example (Pascal
part) (c_gpc.pas)| [Example (C part) (c_gpc_c.c)],

or including Pascal code into programs written in other languages. [Example (Pas-
cal part) (gpc-c_pas.pas)] [Example (Pascal unit) (gpc_c_unit.pas)] [Example (C part)
(gpe-c-c.0)

Extensions like ‘BitSize0f’ and ‘ConvertFromBigEndian’ help you to deal with dif-
ferent data sizes and endianesses. [Example (endiandemo.pas)]

Little somethings like ‘DirSeparator’, ‘PathSeparator’, ‘GetTempDirectory’ help you
to write programs that look and feel “at home” on all operating systems.

The ‘PExecute’ routine lets you execute child processes in a portable way that takes
full advantage of multitasking environments. [Example (pexecutedemo.pas)]

The GNU GetOpt routines give you comfortable access to Unix-style short and long
command-line options with and without arguments. [Example (getoptdemo.pas)]

Routines like ‘FSplit’ or ‘FSearch’ or ‘FExpand’ know about the specifics of the various
different operating systems. [Example (fexpanddemo.pas)]

The ‘FormatTime’ function lets you format date and time values, according to various
formatting rules. [Example (formattimedemo.pas)]

e Useful and portable GNU standard units:

A ‘Pipe’ unit gives you inter-process communication even under plain DOS. [Example
(pipedemo.pas)] [Demo process for the example (demoproc.pas)]

With the ‘RegEx’ unit you can do searches with regular expressions. [Example
(regexdemo.pas)]

The GNU MultiPrecision (‘GMP’) unit allows you to do arithmetics with integer, real,
and rational numbers of arbitrary precision. [Example: factorial (factorial.pas)] [Ex-
ample: fibonacci (fibonacci.pas)| [Example: power (power.pas)] [Example: real power
(realpower.pas)] [Example: pi (pi.pas)]

Posix functions like ‘ReadDir’, ‘StatFS’ or ‘FileLock’ provide an efficient, easy-to-use
and portable interface to the operating system. [Example (readdirdemo.pas)] [Example
(statfsdemo.pas)| [Example (filelockdemo.pas)]

A ‘DosUnix’ unit compensates for some of the incompatibilities between two families
of operating systems. [Example (dosunixdemo.pas)]

An ‘MD5’ unit to compute MD5 message digests, according to RFC 1321. [Example
(mdbdemo.pas)]

A ‘FileUtils’ unit which provides some higher-level file and directory handling rou-
tines. [Example (findfilesdemo.pas)]

The GNU Pascal Manual

A ‘StringUtils’ unit which provides some higher-level string handling routines. [Ex-
ample (stringhashdemo.pas)]

An ‘Intl’ unit for internationalization. [Example (gettextdemo.pas)] [Example (lo-
caledemo.pas)]

A ‘Trap’ unit to trap runtime errors and handle them within your program. [Example
(trapdemo.pas)]

A ‘HeapMon’ unit to help you find memory leaks in your programs.

The demo programs mentioned above are available both on the WWW and in GPC source
and binary distributions.

Disadvantages:

e The GNU debugger (GDB) does not yet understand Pascal syntax and types; you have to
use C syntax when debugging Pascal programs with GDB.

e With GPC you get longer compilation times than with, e.g., Borland Pascal.

Co-workers welcome!

Able, committed programmers are always welcome in the GNU Pascal team. If you want
to be independent of companies that you must pay for getting a compiler with more restrictive
licensing conditions that only runs on one operating system, be invited to join the development
team, Appendix A [Contributors|, page 487.

Chapter 2: New Features of GNU Pascal. 9

2 New Features of GNU Pascal.

There’s a number of new or changed features which are listed in the following sections.

Features without further description refer to new routines or options.

2.1 General Changes And Possible Incompatibilies with

Previous Versions

This release of GPC has been cleaned up substantially. Consequently, a few old and obsolete

features have been dropped or replaced by cleaner, more flexible or otherwise more useful ones.
This might lead to minor problems with old programs, but we suppose they’re very rare (many
programmers might not even know about the old features) and easy to overcome. The most
important ones are listed here, the rest of them is contained in the following sections and marked
with ‘(@)’.

The executables ‘bpc’, ‘pc’ and ‘epc’ as well as the dialect specific behaviour if GPC
is invoked by those names have been dropped. What they did was equivalent to ‘gpc
--borland-pascal’, ‘gpc —-classic-pascal’ or ‘gpc —-extended-pascal’, respectively,
and you can use these forms now. If you need them often, you can put them in scripts or
aliases called ‘bpc’ etc., of course.

‘asmname’ in variable and constant declarations must now come after the type (e.g. ‘var
foo: Integer = 42; asmname ’bar’;’). Furthermore, ‘asmname’ doesn’t imply ‘external’
anymore for variables.

The internal file handling in the RTS was changed from using ‘FILE *’ pointers to integer file
handles, to make it more efficient and to get rid of some problems. Accordingly, the ‘CFile’
field in ‘BindingType’ was replaced by a ‘Handle’ field, the ‘AssignCFile’ procedure by
an ‘AssignHandle’ procedure, and the ‘GetFile’ function was removed (a substitute is the
function ‘FileHandle’ which has already existed in previous releases).

The option ‘--no-nested-comments’ (to allow comments like ‘{ *)’ as the standard re-
quires) has been renamed to ‘--mixed-comments’ (note the inverted value). Accordingly,
the compiler directives ‘{$N+}’ and ‘{$N-1}’ have been renamed to ‘{$no-mixed-comments}’
and ‘{$mixed-comments}’. The default, when no dialect options are given, is still
‘~-no-mixed-comments’ (i.e., what used to be ‘--nested-comments’).

A new option ‘--nested-comments’ to allow real nested comments like ‘{ { } }’ (also
available as a compiler switch, like almost all command-line options). Note the new
meaning of this switch, so if you used it before, you’ll probably have to change it to
‘~-no-mixed-comments’ (see above). If nested comments are enabled, comments are also
allowed within compiler directives and macros — however, compiler directives within other
compiler directives are still not allowed, and compiler directives within comments are, of
course, still ignored.

C style character escapes (‘\n’, ‘\007’ etc.) are now the default for strings enclosed in
double quotes, while single quoted strings do not allow them (according to the standard).
Accordingly, a verbatim ‘"’ in a double quoted string is now obtained with ‘\"’ rather than
‘v’ (but a verbatim 7 in a single quoted string still with ‘>?’) of course). Therefore,
the option ‘--[no-]char-escapes’ and the compiler directives ‘{$E+}’/‘{$E-}’ have been
dropped. If you used these features, please change to the appropriate kind of quotes.

4

Macros are no more expanded in ‘--borland-pascal’ and ‘--delphi’ modes. Expanding

them causes a few problems with strange sources written for BP which use the same name
for a conditional define and an identifier. Macros can be turned on/off, independently of
the dialect, with the new switches ‘--[no-Imacros’. (B)

Macros and conditionals defined with ‘{$define}’ are now case-insensitive. (B) Macros and
conditionals defined with ‘--define’ on the command line are still case-sensitive for compat-
ibility to other GNU compilers. In addition, GPC provides ‘{$csdefine}’ or ‘--csdefine’

10

The GNU Pascal Manual

and ‘{$cidefine}’ or ‘--cidefine’ to define case sensitive or insensitive macros or condi-
tionals, respectively. If you have defined macros or conditionals with ‘{$define}’ and rely
on them being case-sensitive, change it to ‘{$csdefine}’ now.

The mechanism for including GPC code into code written in other languages has changed
and is now more robust. A header gpc-in-c.h is provided for inclusion of GPC code into C
programs, and a demo program GPC_C_Pas (together with C code calling it) is supplied to
demonstrate this. (Including C code into GPC programs works as before.)

The preprocessor is now called ‘gpcpp’ (it was ‘gpc-cpp’ before). If you have installed an
older GPC version, please remove gpc-cpp now. If you have any scripts that refer to gpc-cpp
directly, change the reference to gpcpp. If you use DJGPP, and you added the GPC specific
sections to djgpp.env as described in the FAQ, please change ‘ [gpc-cppl’ to ‘[gpcpp]l’.

3

In ‘--borland-pascal’ mode, GPC now ignores everything after ‘end.’. (This also takes
care of “~7Z” characters at the end of Dos text files). In particular, multiple units or modules
in one file don’t work anymore in ‘--borland-pascal’ mode. (B)

GPC has introduced a few new keywords which may break programs that use those names
as identifiers. Most of them are only “conditionally reserved”, i.e. they act as keywords only
in those situations where the keyword makes sense, and can be used as identifiers elsewhere.
While this does not eliminate all possible conflicts, it avoids a number of them. Among the
new keywords are ‘attribute’, ‘class’ and ‘published’. (D, partly)

2.2 Command Line Options and Compiler Directives

(Here are GPC’s new options. For an overview of the options, see Chapter 6 [Invoking GPC],

page 63.)

‘-x Pascal’/‘--language=Pascal’ works nows; new option ‘-x

Preprocessed-Pascal’/‘--language=Preprocessed-Pascal’ to compile
without preprocessing

‘{$ifopt}’ works now, with short directives like in BP (‘{$ifopt X+}’) (B) and also with
long directives (‘{$ifopt extended-syntax}’)

Local compiler directives and defines can be specified with ‘{$local}’ and ‘{$endlocall}’.

Delphi (or C++) style ¢//’ comments in default and ‘--delphi’ modes, and a switch
‘~-[no-]delphi-comments’ to turn them on/off explicitly. (D)

‘~W[no-limplicit-abstract’ (warn if an object type not declared ‘abstract’ contains an
abstract method)

‘~W[no-Jlinherited-abstract’ (warn if an abstract object type inherits from a non-abstract
one)

‘~W[no-]typed-const’ (warn about BP style misuse of typed constants)

‘~W[no-Inear-far’ (warn about use of the obsolete BP compatible ‘near’ and ‘far’ direc-
tives)

‘~W[no-Junderscore’ (warn about double/leading/trailing underscores in identifiers)
‘~W[no-]lmixed-comments’ (warn about use of mixed comments)
‘-W[no-lnested-comments’ (warn about use of nested comments)
‘~W[no-]semicolon’ (warn about a semicolon after ‘then’, ‘else’ or ‘do’)
‘-W[no-]field-name-problem’ (don’t warn about a problem with field names)

‘~W[no-Jobject-directives’ (don’t warn about unimplemented ‘private’, ‘protected’
and ‘public’ directives)

‘~W[no-Jwarnings’ (enable/disable warnings)

All ‘-Wfoo’ warning options also work as ‘{$W foo}’ compiler directives. In contrast to the
last alpha release, there must now be a space after the ‘W’. (@)

Chapter 2: New Features of GNU Pascal. 11

‘--no-default-paths’ (disable standard unit etc. paths)

‘~-no-unit-path’, ‘--no-object-path’ (disable any unit/object paths given so far)
‘~-[no-Jread-base-specifier’ (in read statements, allow non-decimal input with ‘n#’)
‘~-[no-Jread-hex’ (in read statements, allow hexadecimal input with ‘$’)
‘--—[no-]read-white-space’ (in read statements, require whitespace after numbers)
‘~-[no-Jio-checking’ (same as ‘{$I+}’, ‘{$I-})

‘~—[no-]double-quoted-strings’

‘~—[no-]stack-checking’, also as compiler directives ‘{$[no-]stack-checking}’ or
{$s+}/{$s-} (B)

‘-~ [no-]typed-address’, also as compiler directives ‘{$[no-]Jtyped-address}’ or
{$T+}/{$T-} (B)

‘~-[no-]transparent-file-names’ (derive the external file names from the file variable
names

‘~-[no-]progress-messages’, ‘--[no-]progress-bar’ (output information to give
progress messages or display a progress bar while compiling, using suitable utilities)

‘~-init-modules=foo:bar’ (initialize the named modules in addition to those imported
regularly; kind of a kludge)

‘{$ [no-ldebug-statement [=foo]}’ (call a procedure automatically before each statement
for debugging)

3

‘-—big-endian’, ‘--little-endian’, ‘~-print-needed-options’ for targets whose endi-

anness can vary
The ‘--[no-]c-numbers’ switch has been removed. If you really used C style octal or hex

numbers (‘0400’, ‘0x£00’), you can easily convert them to the Extended Pascal notation
(‘8#400’, ‘16#£00’) or (hex only) to the Borland Pascal notation (‘$foo’). (@)

‘{$gnu-pascal}’ is now completely equivalent to ‘--gnu-pascal’; ‘{$gnu-pascal}’
has been added to all units shipped with GPC, so they can also be compiled when
‘-—borland-pascal’ or other dialect options are given on the command line.

‘{$if}’ directives now understand Pascal operators like ‘and’, ‘or’, ‘not’ (C operators are
also still understood).

‘{$P+}’/*{$P-}’ was replaced by ‘{$ [no-IJpedantic}’ (or ‘--[no-]pedantic’ on the com-
mand line)

The single-letter compiler directives are now BP compatible. Those that are not mean-
ingful or not necessary in GPC (e.g. ‘{$F+}’, ‘{$0...}’, or ‘{$M}’ with only numbers fol-
lowing) are ignored in ‘--borland-pascal’ mode and warned about otherwise. (B) Note:
‘{$w+}’/{$W-}" is now also ignored in ‘~-borland-pascal’ mode (it is the only single-letter
directive left that has a different meaning in BP and in GPC, and besides, the BP meaning
can be safely ignored in GPC). To enable/disable warnings in ‘--borland-pascal’ mode,
you can use ‘{$W [no-Jwarnings}’ now. (@)

The RTS command line options are now also available as long options; new RTS options
‘~-version’ (print RTS version and exit), ‘~—abort-on-error’ (abort with SIGABRT on
runtime error), ‘--error-file’, ‘-—error-fd’ (dump runtime error messages and strack
trace to given file name or FD).

RTS command line options are now recognized after ‘--gpc-rts’ instead of ‘-Grts’. Also,
a single option can be given with ‘~-gpc-rts=option’. This is allowed multiple times. (@)

%) ¢

The items of ‘--field-widths’ are now delimited by ‘.’ rather than ‘> so they can be
distinguished from the ‘,” used to delimit several compiler options. (@)

Files with ‘.pp’ or ‘.dpr’ extension are recognized as Pascal sources. (D)

12

e New options

The GNU Pascal Manual

¢ 4

--classic-pascal’ and ‘--classic-pascal-level-1’ (equivalent to

‘--standard-pascal’ and ‘--standard-pascal-level-1’, and meaning to supersede the
latter in the future)

e New predefined symbol ‘__GPC_VERSION__’

2.3 Compiler and RTS Built-in Declarations

e Syntax:

New operators ‘is’ and ‘as’ for objects

‘shl’ and ‘shr’ can also be used as procedures now.

‘mod’ with negative right operand now works like in BP. (B)
Expressions like ‘-2 * +3’ are now allowed without parentheses. (B)
The alternative address operator ‘&’ was removed. (‘@ is still there.) (@)
‘register’ directive

‘asmname’ and ‘uses ... in’ now allow concatenated strings

‘asmname’ for programs, units and module interfaces

Directives with double underscores like ‘__asmname__’, ‘__inline__’ have been

dropped. The same directives without underscores have been available for a long
time. Furthermore, GPC now supports ‘“const’ to create a pointer to a constant
(which could be done in a C like fashion with the ‘__const__’ directive before). (@)

e Types:

Abstract methods and object types
PObjectType with fields ‘Size’, ‘NegatedSize’, ‘Parent’ and ‘Name’, returned by
‘Type0f’ and required by ‘SetType’
ByteBool, ShortBool, WordBool, MedBool, LongBool, LongestBool, Boolean(42) (D?)
Type qualifiers like ‘*__byte__" or ‘__unsigned__’ have been dropped. GPC has been
supporting “real” type names like ‘Byte’ or ‘ByteWord’ for a long time, and it’s easy to

change to them. Similar for ‘__cstring__’" and ‘__void__’ where ‘CString’ and ‘Void’
are available. (@)

‘nil’ is accepted as a value of any procedural /functional type (B)

Some of the following declarations are built into the compiler, others are declared in the ‘GPC’

module.

e Files and 1/0:

SeekEOF, SeekEOLn (B)
IOErrorFile

New parameter ‘ElementSize’ to ReverseBytes, ConvertFromLittleEndian, Convert-
FromBigkndian, ConvertToLittleEndian, ConvertToBigEndian, BlockReadLittleFEn-
dian, BlockReadBigEndian, BlockWriteLittleEndian, BlockWriteBigEndian (@)

ReadStringLittleEndian
ReadStringBigEndian
WriteStringLittleEndian
WriteStringBigEndian
GetTempFileNamelnDirectory
PathExists
DataDirectoryName
AssignBinary

Chapter 2: New Features of GNU Pascal. 13

— HasWildCardsOrBraces

— BraceExpand

— MultiFileNameMatch

— GlobOn

— MultiGlob

— MultiGlobOn

— QuoteFileName

— UnQuoteFileName

— ReadLink

— FExpandQuoted

— ForceAddDirSeparator

— FindNonQuotedChar

— FindNonQuotedStr

— NameExtFromPath

— SystemlInfo

— GetMountPoint

— FileMove

— ChMod

— ChOwn

— IO0Select

— I0SelectRead

— FileNameLoCase

— FileNamesCaseSensitive (constant)
— DirRoot (constant)

— MaskNoStdDir (constant)

— QuotingCharacter (constant)

— EnvVarChars (constant)

— EnvVarCharsFirst (constant)

— WildCardChars (constant)

— FileNameSpecialChars (constant)
— ShellExecCommand (constant)
— DataReady renamed to CanRead (@)
— FileLock, FileUnlock

— MemoryMap, MemoryUnMap

— RuntimeErrorErrNo

— InOutResCErrorString

— CStringStrError

— ‘StatFS’ is now a function rather than a procedure. (@)

— ‘InOutResStr’ was renamed to ‘InOutResString’, is now a ‘PString’ rather than a
‘CString’, and is now in the ‘GPC’ module rather than built into the compiler. (@)

— New parameter ‘ErrNoFlag’ to ‘IOError’, ‘I0ErrorInteger’, ‘I0ErrorCString’ and
‘I0ErrorFile’ (@)

— New parameter ‘Quoted’ to RelativePath (@)
— New parameter ‘Prefix’ to ConfigFileName (@)

14 The GNU Pascal Manual

— New parameter ‘AccessTime’ to SetFileName (@)

— ExpandEnvironment recognizes ‘“user’

— Each of the parameters ‘Dir’, ‘Name’ and ‘Ext’ to ‘FSplit’ may now be ‘Null’.

— New fields ‘User’, ‘Group’, ‘Mode’, ‘Device’, ‘INode’, ‘Links’, ‘SymLink’, ‘TextBinary’
and ‘Special’, ‘CloseFlag’ in ‘BindingType’

— The variable ‘TextFilesBinary’ has been dropped. Instead, you can now use the
procedure ‘AssignBinary’ or the field ‘TextBinary’ in ‘BindingType’. (@)

— File sizes can now be bigger than ‘Integer’ (e.g. 64 bit files on 32 bit machines) if
supported by the OS via lseek64() or llseck() (e.g. Linux, Solaris, IRIX).

— Renamed the file mode constants from ‘fmfoo’ to ‘fm_foo’. (@)

— ‘GetIOErrorMessage’ now returns a string rather than a ‘CString’. (@)

— In ‘GlobBuffer’, the fields ‘Count’ and ‘Result’ (pointer to an array of ‘CString’s, 0
baser) were replaced by ‘Result’, a pointer to an array of pointers to strings, 1 based).
(@)

e Strings:

— FormatString

— FormatStringTransformPtr

— Integer2String

— IsUpCase

— IsLoCase

— IsAlpha

— IsAlphaNum

— IsAlphaNumUnderscore

— IsSpace

— IsPrintable

Renamed the CString routines in the RTS so they get a ‘CString’ prefix, moved the
BP compatibility identifiers for the same routines into the ‘Strings’ unit (B) (@)

MemCompCase

StrEqualCase

PosCase

LastPosCase

PosFromCase

LastPosTillCase

IsPrefixCase

IsSuffixCase

LTrim (VS/Pascal compatibility :—)
LineBreak (constant)

SetEnv (makes obsolete libc’s PutEnv (@))
UnSetEnv

GetCEnvironment

DisposePPStrings

‘SetLength’ does not require extended syntax anymore.

The environment variable management is now implemented in Pascal, so it’s indepen-
dent of libe differences (e.g. the presence or not of ‘environ’). Access via ‘GetEnv’ etc.
works unchanged.

Chapter 2: New Features of GNU Pascal. 15

— The ‘Environment’ variable is now a schema which contains the environment variables
as CStrings. (@)

— Empty and case-sensitive environment variables are allowed within GPC programs even
under Dos.

e Random:
— SeedRandom
— SeedRandomPtr (variable)

— Randomize is called automatically when necessary (except when using the BP compat-
ible random number generator in the System unit (B)).

e Memory:
— ReAlloc; previous ReAlloc function (libc) renamed to CReAlloc (@)
— ReAllocPtr (variable)
— ForEachMarkedBlock

— AllocateBigMem, DisposeBigMem, MoveToBigMem, MoveFromBigMem, MapBigMem
for uniform access to big memory blocks for GPC and BP (B)

e Time:
— Sleep
— SleepMicroSeconds
— Alarm
— GetCPUTime
— GetMicroSecondTime
— GetDayOfWeek
— GetDayOfYear
— GetSundayWeekOfYear
— GetMondayWeekOfYear
— GetISOWeekOfYear
— FormatTime

— The constant ‘MonthLength’ was replaced by a function of the same name that handles
leap years. (@)

— DayOfWeekName (constant)

— InvalidYear (constant)

— New parameters ‘TimeZone’, ‘DST’, ‘TZNamel’, ‘TZName2’ to ‘UnixTimeToTime’ (@)

— New fields ‘TimeZone’, ‘DST’, ‘TZNamel’, ‘TZName2’ in ‘TimeStamp’
e Misc:

— Include and Exclude for sets (B)

— InitProc (D)

— Initialize (D)

— Finalize (D)

— IsInfinity

— IsNotANumber

— SplitReal

— Lnl1Plus

— ReturnAddress

— FrameAddress

16

The GNU Pascal Manual

Runtime errors are now printed with their address to help debugging (using addr2line),
and the address is stored in ErrorAddr. (B)

RegisterRestoreTerminal
UnregisterRestoreTerminal
RestoreTerminal
ExecuteNoTerminal
SetProcessGroup
SetTerminalProcessGroup
GetTerminalProcessGroup
IsTerminal
GetTerminalName
SetInputSignals
GetInputSignals
GetShellPath
GetPasswordEntryByName
GetPasswordEntryByUID
GetPasswordEntries
StrSignal

Kill

WaitPID
InstallSignalHandler
BlockSignal

SignalBlocked

Constants for the signals
UserID

GrouplD

IIReserved Address, IlIPriviledgedInstruction, IlIReservedOp were removed. (@)

2.4 GPC Units

e Compiler features related to units:

‘uses’ and ‘import’ may now occur multiple times in a program, unit/module interface
or unit/module implementation, even between declarations.

‘gpc-main’ settings are now possible in units
‘public’ and ‘private’ directives for interfaces

e CRT:

Works now under Cygwin and mingw.

DJGPP: support for 40 column modes (requires updated PDCurses library)
Renamed the the conditional to get an X11 version from XCURSES to X11. (@)
Renamed GetScreenSize to ScreenSize (WinCRT compatibility) (B) (@)

WindowOrg, WindowSize, Cursor, Origin, InactiveTitle, AutoTracking, WindowTitle,
(variables), ScrollTo, TrackCursor (WinCRT compatibility) (B)

SimulateBlockCursor, SimulateBlockCursorOff

Curses is not initialized at the beginning of the program, but rather when the first
CRT routine is called. (B)

Chapter 2: New Features of GNU Pascal. 17

— CRTlInit to explicitly initialize CRT and also set some defaults (PCCharSet and update
level) to more natural (and less BP compatible) values.

— CRTSetTerminal

— CRTAutoInitProc (variable)

— CRTNotlInitialized

— CRTSavePreviousScreen

— CRTSavePreviousScreen Works

— Any of the parameters to GetWindow may now be ‘Null’.

— Support for panels (overlapping windows): GetActivePanel, PanelNew,
PanelDelete, PanelBindToBackground, PanellsBoundToBackground, PanelActivate,
PanelHide, PanelShow, PanelHidden, PanelTop, PanelBottom, PanelMoveAbove,
PanelMoveBelow, PanelAbove, PanelBelow, IgnoreCursor

— Replaced the variables PCCharSet and UseControlChars by routines SetPCCharSet,
GetPCCharSet, SetControlChars, GetControlChars. (@)

— SetScreenSize
— SetMonochrome
— Renamed IsMonoMode to IsMonochrome. (@)

— On ncurses platforms, changing the screen is now done through a shell command
definable in the environment variable ‘RESIZETERM’ (which defaults to ‘resize’,
‘SVGATextMode’ and ‘setfont’). The variables ‘crt_setfont_command_80_25’
‘crt_setfont_command_80_50’, ‘crt_setfont_command_40_25’ and
‘crt_setfont_command_40_50" (Linux only) were removed. (@)

— CRTUpdate

— CRTRedraw

— SetScroll

— CRTSetCursesMode

— RestoreTerminalClearCRT

— CtrlKey

— AltKey

— AltGrKey

— ExtraKey

— constants chCtrlA ... chCtrlZ, kbCtrlA ... kbCtrlZ

— Catch some signals and return pseudo function keys for them if CheckBreak is False.
— React to screen size changes by external events and return a pseudo function key.

— Reduced the (already small) system-dependent code, and added an overview of the few
problematic features in the comment at the beginning of crt.pas.

o RegEx:
— RegExPosFrom
— CharSet2RegEx

— Support for converting subexpression or complete matching references to upper or lower
case while replacing them with ‘\u7’ or ‘\17’.

— In ‘RegExType’, the field ‘Error’ is now of type ‘PString’ rather than ‘CString’. (@)
o GMP:

— mpf_exp

— mpf_n

— mpf_pow

18 The GNU Pascal Manual
— mpf_arctan
— mpf_pi
— The unit now works with version 4.x of the GMP library, but it also still works with
version 2.x or 3.x.
e System:

SetTextBuf (B)
CompToDouble (D)
DoubleToComp (D)
AllocMemCount (D)
AllocMemSize (D)

Assert (D)
DefaultAssertErrorProc
AssertErrorProc (variable) (D)
NoErrMsg (variable) (D)

RealToBPReal, BPRealToReal to convert between binary BP compatible 6 byte reals
and GPC’s reals (useful, e.g., for binary file exchange with BP programs) (B)

Ofs, Seg, Ptr, CSeg, DSeg, SSeg, SPtr (mostly useless and only for BP compatibility)
(B)

A number of variables like SelectorInc (mostly useless and only for BP compatibility)
(B)

Renamed the ‘__BP_INTEGERS__’ conditional to ‘'__BP_TYPE_SIZES__’. (@)

New conditional ‘__BP_PARAMSTR_O__’

e Dos, WinDos:

GetCBreak

SetCBreak

Get Verify

Set Verify

Renamed the ‘_Borland_16_Bit_’ conditional to ‘__BP_TYPE_SIZES__’. (@)

Intr, MsDos, only under DJGPP if ‘__BP_UNPORTABLE_ROUTINES__’ is defined. (B)

DosVersion, SetDate, SetTime, only if ‘__BP_UNPORTABLE_ROUTINES__’ is defined (em-
ulated on non-DJGPP). (B)

Pipe:

New parameter ‘Process’ to Pipe (@)
WaitPipeProcess

PExecute:

Get

Routines moved to the ‘Pipe’ unit. The ‘PExecute’ unit does not exist anymore. (@)
Opt:

ResetGetOpt

‘GetOptErrorFlag’ is now True by default. (@)

Integrated into the RTS so you don’t need a ‘uses GetOpt’ directive anymore. (@)
Renamed the variables and constants used (see gpc.pas under ‘Command Line Option
Parsing’). (@)

‘GetOptLong’ can now optionally derive the short options from the ‘LongOptions’ array.

DosUnix:

OEM2Latinl

Chapter 2: New Features of GNU Pascal. 19

— Latin120EM
WinCRT:
New unit (identical to CRT) (B)
HeapMon:
New unit for (simple) heap checking.
Trap:
New unit for runtime error trapping.
MD5:
New unit for computing MD5 message digests.
FileUtils:
New unit with some file and directory utilities.
StringUtils:
New unit with some string utilities.
Intl:
New unit for internationalization.
GPC-BP:

A ‘GPC’ unit for BP to provide some GPC compatibility to BP programs and make it easier
to gradually convert them to GPC. (G)

A few of the units (in particular: CRT, GMP and RegEx) require libraries. The sources

of the libraries, with small patches where necessary, as well as binaries for 1586-pc-linux-gnu,
i586-pc-linux-gnulibcl, m68k-linux, sparc-sun-solaris2, i386-pc-go32, i386-pc-cygwin3d2 and 1386-
pc-mingw32 are available from

http://www.gnu-pascal.de/1libs/

2.5 GPC Manual

Some very obsolete sections of the manual (e.g., the output of running the PVS test suite
on an Alpha machine in 1995 ;—) were removed.

The manual was restructured. Several partly overlapping chapters were included into the
Programmer’s Guide, and the overlapping material was merged into more coherent sections.

The BP QuickStart Guide was left a separate chapter and completed with a section about
differences between BP and GPC, especially mentioning endianness issues.

A lot of new material was added to the ‘Programming’ and ‘Reference’ chapters.

The list of command-line options and the list of keywords for the various dialects were
updated, and from now on, they are automatically kept up to date, directly from the source.
The ‘Invoking GPC’ chapter does not contain all options inherited from GCC anymore (these
can be found in the GCC manual, anyway), but rather more extensive descriptions of the
most commonly used GPC options, with examples.

The interface of all units included with GPC, together with a short description of the units,
is now included in the manual. The interface, also that of the ‘GPC’ module which describes
the interface to the Run Time System, is formatted more nicely, especially in the printed
version of the manual.

The ‘Support’ chapter was updated, now including information about GPC’s Test Suite
and how to report bugs most effectively, as well as up-to-date contact information.

The installation instructions were updated, now matching the current GPC and GCC ver-
sions.

http://www.gnu-pascal.de/libs/

20

The GNU Pascal Manual

The FAQ, the To-Do list, and the list of new features (this one :—) were integrated into the
manual.

The list of authors in the manual was updated, and the list of contributors was included
from the WWW page.

The manual was integrated with GPC’s WWW pages, i.e. most of the WWW pages were
synchronized with the corresponding information in the manual, and both now contain the
same information.

The GNU Pascal Coding Standards (English, German and Croatian) have been added.

Translation of the manual into Croatian has started.

2.6 Demo Programs

There is a number of new demo programs to demonstrate some features of the compiler
and the units. The demo programs are part of source and binary GPC distributions. After
installation, they can be found in ‘<prefix>/doc/gpc/demos/’.

The demo programs printed in the GPC Manual (currently 192, but expected to be-
come more) are now installed as separate files, ready to be compiled, in a directory
‘<prefix>/doc/gpc/docdemos/’.

2.7 Utilities

BP compatible ‘binobj’ utility

2.8 Test Suite

The Test Suite is used to verify that all features of GPC work as expected and to reproduce

bugs reported. Test programs for bugs found by users and for new features are constantly added.
The test suite is part of source, not binary, GPC distributions, and it is available separately for
download.

As usual, many new tests have been added to the Test Suite.

The Test Suite now supports ‘WARN’ to check for warnings. On the other hand, ‘WRONG’ tests
are now run with warnings switched off to detect only real errors.

The few checks dependent on the system or certain installed tools or libraries have been
equipped with checks about the system properties, and are skipped on systems on which
they are not applicable.

The old dejagnu tests have been integrated into the Test Suite.

‘make pascal.check’ (or ‘make check-pascal’) now runs the current Test Suite (as ‘make
check2-gpc’ did before) rather than the (now removed) dejagnu tests. This must be done
in the build directory (not the ‘p’ subdirectory) or in the ‘test’ subdirectory of the source
directory. (@)

The Test Suite now produces a summary output by default. To get the long output format
as before, run ‘make pascal.check-long’ (or ‘check-pascal-long’) now. (@)

The GPC Manual as well as the ‘test/README’ file in source distributions (or ‘BUGS’ in
binary distributions) tells you how to run the Test Suite and describes all features of the
testing environment, to make it easier for users to construct even exotic new tests, and con-
tains some generic instructions on how to report bugs. See Section 10.7 [Testing|, page 437,
and see Section 10.6 [Reporting Bugs|, page 435.

Chapter 2: New Features of GNU Pascal.

2.9 Legend
‘(@): minor backward-incompatibility
“(B): BP compatibility
“(D)": Delphi compatibility
‘(G): GPC compatibility :—)
Have fun,

The GNU Pascal Development Team

21

22

The GNU Pascal Manual

Chapter 3: The GNU Pascal Frequently Asked Questions List. 23

3 The GNU Pascal Frequently Asked Questions List.

Edition 0.9, August 2000

This is the Frequently Asked Questions List (FAQ) for GNU Pascal. If the FAQ and the doc-
umentation do not help you, you have detected a bug in it which should be reported, Section 10.1
(Mailing List|, page 433. Please really do it, so we can improve the documentation.

3.1 GNU Pascal

3.1.1 What and why?

The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU Pascal
or GPC) which

e combines the clarity of Pascal with powerful tools suitable for real-life programming,

e supports both the Pascal standard and the Extended Pascal standard as defined by ISO,
ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),

e supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Delphi
and Pascal-SC) in so far as this serves the goal of clarity and usability,

e may be distributed under GNU license conditions, and

e can generate code for and run on any computer for which the GNU C compiler can generate
code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to proceed
to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), a large subset
of Extended Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland
Pascal (version 7.0) with some Delphi extensions, and provides a lot of useful GNU extensions.

3.1.2 What is the current version?

Prior to July 2000 releases were several months apart. Since then there has been
a new release every few days, available as a source archive from the GPC web site,
http://www.gnu-pascal.de.

For details about new features, see the section ‘News’ on the web site. On bugs fixed recently,
see the ‘Done’ section of the To-Do list (on the same web site).

GPC uses GCC as a back-end. Patches for GCC 2.8.1 and GCC 2.95.x are provided but it
is recommended that you use GCC 2.95.x.

3.1.3 Is it compatible with Turbo Pascal (R)?

GPC is not a drop-in replacement for Borland’s Turbo Pascal (R). Almost all BP language
features are supported. Notable exceptions are the string format (as discussed below), or the
‘Mem’ and ‘Port’ pseudo arrays, though replacement functions for the latter on TA32 platforms
exist in the ‘Ports’ unit.

Almost all of BP’s run time library is supported in GPC, either by built-in compiler features
or in units with the same names as their BP counterparts.

For details about the compatibility, the few remaining incompatibilities and some useful al-

ternatives to BP features, see the ‘Borland Pascal’ chapter in the GPC Manual. (see Chapter 5
[Borland Pascal], page 43)

http://www.gnu-pascal.de

24 The GNU Pascal Manual

3.1.4 Which platforms are supported by GNU Pascal?

GPC uses the GCC backend, so it should run on any system that is supported by GNU
CC. This includes a large variety of Unix systems, MS-DOS, OS/2 and Win32. A full list of
platforms supported by GCC can be found in the file ‘INSTALL’ of the GCC distribution. Not
all of these have actually been tested, but it is known to run on these platforms:

ix86-linux (Linux 2.x, ELF)
1486-linuxaout

1486-linuxoldld

1386-freebsd1.2.0

AIX 4.2.1

AIX 4.3

DJGPP V2 (Dos

EMX 0.9B (0S/2, Dos)

Cygwin32 beta20 and higher (MS-Windows95/98, MS-Windows NT)
mingw32 (MS-Windows95/98, MS-Windows NT)

mips-sgi-irix5.3
mips-sgi-irix6.5
sun-sparc-sunos4.1.4
sparc-sun-solaris2.x
sun-sparc-solaris 2.5.1
sun-sparc-solaris 2.6
sun-sparc-solaris 7
sun-sparc-solaris 8
alpha-unknown-linux
alpha-dec-o0sf4.0b
s390-ibm-linux-gnu
OK people — send us your success stories, with canonical machine name!

3.2 Installing GPC

You find the most up-to-date installation instructions in the GPC Manual or the file ‘INSTALL’
in source distributions, or on the GPC web site. (see Chapter 4 [Installation], page 35)

The following sections describe things you might need or want to install besides GPC itself.

3.2.1 What to read next

After installing GPC, please check the files in the directory ‘/usr/local/doc/gpc’:

‘README’ General Information about GPC

‘FAQ This FAQ :—)

‘NEWS’ Changes since the last release

‘BUGS’ How to report bugs, about the Test Suite
‘AUTHORS’ List of GPC authors

‘COPYING’ The GNU General Public License
‘COPYING.LIB’ The GNU Lesser General Public License

3.2.2 Which components do I need to compile Pascal code?

A complete Pascal compiler system should at least have:
1. The actual compiler, GPC.
2. An editor, assembler, linker, librarian and friends.
3. A C library. If you have a working C compiler, you already have this.

Chapter 3: The GNU Pascal Frequently Asked Questions List. 25

4. A debugger, if you want to debug your programs.

For most people, the GNU binutils and GNU debugger (‘gdb’) are a good choice, although
some may prefer to use vendor specific tools.

3.2.3 How do I debug my Pascal programs?

To debug your programs, (a) GNU Pascal must be able to generate executables with debug
info for your platform, and (b) you must have a debugger which understands this.

e If ‘gpc —g -0 hello hello.p’ says:
gpc: —g not supported for this platform
then GPC is unable to generate debugging info. Usually, installing ‘gas’ (part of GNU
binutils) instead of your system’s assembler can overcome this. When you configure
the GCC used for GPC, specify ‘--with-gnu-as’, and possibly ‘--with-gnu-1d’ and/or
‘~—with-stabs’. More information can be found in the ‘INSTALL’ file in the GNU CC
source directory.

e Your system’s debugger may not understand the debug info generated by GNU tools. In
this case, installing ‘gdb’ may help.

The bottom line: if you can debug GCC compiled programs, you should be able to do this
with GPC too.

The GNU debugger (‘gdb’) currently does not have a “Pascal” mode, so it is unable to
display certain Pascal structures etc. When debugging, please note that the Initial Letter In
Each Identifier Is In Upper Case And The Rest Are In Lower Case. If you want to display
variable ‘foo’ in the debugger, type ‘show Foo’ or ‘display Foo’ instead.

Although ‘gdb’ is an excellent debugger, it’s user interface is not everybody’s preference. If
you like to debug under X11, please refer to the comp.windows.x FAQ: “Where can I get an
X-based debugger?” at:
http://www.cis.ohio-state.edu/hypertext/faq/usenet/x-faq/part6/faq-doc-2.html

Some useful frontends include: XXGDB, tGDB and XWPE. See:
http://wuw.ee.ryerson.ca:8080/ elf/xapps/Q-IV.html

Very nice, but resource consuming is the Motif based DDD:
http://sol.ibr.cs.tu-bs.de/softech/ddd/

Furthermore, RHIDE (see Section 3.2.6 [IDE], page 26) contains built-in debugging suport,
similar to the IDE of BP.

3.2.4 What additional libraries should I have?

You will need certain additional libraries when you compile some of the units. These can be
found in the directory http://www.gnu-pascal.de/libs/.

Currently, there are the following libraries:

gmp Arithmetic for integers, rationals and real numbers with arbitrary size and precision.
Used by the GMP unit.

rx Regular expression matching and substitution. Used by the RegEx unit.

ncurses

PDCurses Screen handling. Used by the CRT unit. Depending on your system, you have the
following choices:

Unix: You can compile terminal applications with ncurses and applications that
run in an X11 window with PDCurses (though terminal applications can, of course,
also run in an xterm under X11). ncurses is used by default. If you want to use
PDCurses (a.k.a. XCurses), give the option ‘-DX11’ when compiling CRT.

http://www.cis.ohio-state.edu/hypertext/faq/usenet/x-faq/part6/faq-doc-2.html
http://www.ee.ryerson.ca:8080/~elf/xapps/Q-IV.html
http://sol.ibr.cs.tu-bs.de/softech/ddd/
http://www.gnu-pascal.de/libs/

26 The GNU Pascal Manual

Dos with DJGPP and MS-Windows with mingw: Only PDCurses is available and
will be used by default.

MS-Windows with Cygwin: PDCurses and ncurses are available. PDCurses is used
by default. If you want to use ncurses, give the option ‘-DUSE_NCURSES’ when
compiling CRT.

Other systems: Please see the ‘README’s and installation instructions of PDCurses
and ncurses to find out which one(s) can be built on your system. See the condition-
als at the end of crt.inc and crtc.h (and change them if necessary) on which library
is used by default.

ElectricFence
This library is not used by any GPC unit. It is a debugging tool to assist you in
finding memory allocation bugs. To use it, just link it to your program, either on
the command line (‘-~lefence’) or in the source code (‘{$L efence}’) which you
might want to put into an ‘{$ifdef DEBUG}’ or similar since using libefence is only
recommended for debugging.

The source code of the libraries is available in the main ‘1ibs’ directory. Most libraries come
with one or several patches which should be applied before compiling them.

Binaries for some platforms are available in the ‘binary/platform’ subdirectories. If you
compile the libraries for other platforms, be invited to make the binaries available to us for
distribution on the web site.

There are also the following files:

‘terminfo-linux.tar.gz’

This is a patch to enable ncurses programs to make use of the ability of Linux 2.2
and newer kernels to produce a block cursor when needed. The present patch can be
installed without recompiling anything, just by copying some files into place. More
details can be found in the ‘README’ file included in this archive. The patch will not
do any harm on older kernels. Please note that not only on Linux machines it is
useful to install the patch. Installing them on any other machine will allow users who
telnet in from a Linux console to profit from the block cursor capability. Besides,
some Unix systems have installed older Linux terminfo entries or none at all, so it’s
a good thing, anyway, to give them a current version. The patch is included in the
terminfo database of ncurses 5.0, so if you install ncurses 5.0 (source or binary), you
don’t need to get the patch separately. But you can install it on a system with an
older ncurses version if you don’t feel like upgrading ncurses altogether.

‘tsort-2.9i.zip’
A little utility (extracted from util-linux-2.9i, but not Linux specific), needed for
the configuration of the rx library. You need it only if you compile rx yourself (and
if it’s not already present on your system), not when using a rx binary.

3.2.5 Contributed units
Several people have contributed units for GPC. They are usually announced on

the mailing list, Section 10.1 [Mailing List], page 433. Most of them can be found in
http://www.gnu-pascal.de/contrib/.

3.2.6 Can you recommend an IDE?

Users of Borland Pascal may wonder if there’s a replacement for the IDE (Integrated Devel-
opment Environment). Here’s a few suggestions:

http://www.gnu-pascal.de/contrib/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 27

e (X)Emacs. Some people think it’s the answer to the question of Life, the Universe and
Everything, others decide it’s uGNUsable. Available from your friendly GNU mirror and
most distributions.

e RHIDE. DJGPP users might want to try RHIDE. The latest (beta) release is compatible
with GNU Pascal and allows stepping, tracing and watching like Borland’s IDE. It can be
downloaded from http://www.tu-chemnitz.de/ sho/rho/rhide/rhide.html.

e PENG. It’s not free software, but it was written with GPC. It’s very similar to Borland’s
IDE, but with many extensions. Binaries for DJGPP, Linux and Solaris can be downloaded
from http://fjf.gnu.de/peng/.

e XWPE is another imitation of the Borland IDE, so users of Borland Pascal may find it a
good alternative.

3.3 GNU Pascal on the DJGPP (MS-DOS) platform
This chapter discusses some potential problems with GNU Pascal on MS-DOS, using DJGPP.

3.3.1 What is DJGPP?

The following paragraph is from the site http://www.delorie.com/djgpp/:

DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher) PCs
running DOS. It includes ports of many GNU development utilities. The development tools
require a 80386 or newer computer to run, as do the programs they produce. In most cases, the
programs it produces can be sold commercially without license or royalties.

3.3.2 If you need more information

GPC/DJGPP is a DJGPP V2 application, and most of the DJGPP documen-
tation applies for GPC too. A great source of information is the DJGPP FAQ:
http://www.delorie.com/djgpp/v2faq/230b.zip

Another place to look for DJGPP documentation is the DJGPP Knowledge Base, at this
URL: http://www.delorie.com/djgpp/doc/kb/

3.3.3 What do I download?

As discussed in Section 3.2.2 [Components|, page 24, other than GPC itself, you
need an assembler, linker and friends, a C library and possibly a debugger. The site
http://wuw.delorie.com/djgpp/ recommended the following files and they will help you find
a mirror:

‘v2/djdev203.zip’ (C library)
‘v2gnu/bnu2951b.zip’ (assembler, . . .)
‘v2gnu/gcc2952b.zip’ (gce)
‘v2gnu/gdb418b.zip’ (debugger)
‘v2gnu/mak379b.zip’ (make)
‘v2gnu/txi40b.zip’ (texi)

This list is about 10 MB not counting GPC. You can use a binary version of GPC from the
web site.

3.3.4 How do I install the compiler?

If you don’t have DJGPP installed on your harddisk, create a directory for GNU Pascal
(‘c:\gpc’), and unzip the archives. Make sure you preserve the directory structure (use ‘pkunzip
-d’). Now, add the directory where ‘gpc.exe’ lives (‘c:\gpc\bin’) to your path and set the
DJGPP environment variable to point to your ‘djgpp.env’ file:

http://www.tu-chemnitz.de/~sho/rho/rhide/rhide.html
http://fjf.gnu.de/peng/
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/230b.zip
http://www.delorie.com/djgpp/doc/kb/
http://www.delorie.com/djgpp/

28 The GNU Pascal Manual

set DJGPP=c:\gpc\djgpp.env
Then, add this to your ‘djgpp.env’ file:

[gpcpp]
C_INCLUDE_PATH=Y%/>;C_INCLUDE_PATHY%DJDIRY/1lang/pascal; %DJDIR},/include

[gpc]
COMPILER_PATH=Y,/>;COMPILER_PATHY%%DJDIRY/bin
LIBRARY_PATH=%/>;LIBRARY_PATH%%DJDIR%/lib;%DJDIR%/Contrib/ngQO/lib

The binary distribution should come with a ‘djgpp.env’ which is already modified, so you
may not have to do this.

The GPC online documentation is in GNU info format; you need the Info reader
(‘txi390Db.zip’) to read it, or use the built-in Info reader of the RHIDE or PENG IDE. To
add the GPC documentation to the info directory file, edit the ‘c:\gpc\info\dir’ file, and
locate this section:

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi) .

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GPC: (gpc.inf).
The GNU Pascal Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi) .

Specific information for low-memory conditions and more can be found in the DJGPP FAQ
and documentation.

3.3.5 I cannot read the Info documentation!

To read the Info documentation, you need the ‘info’ program from ‘txi390b.zip’ or an IDE
like RHIDE or PENG.

3.3.6 GPC says: no DPMI

You don’t have a DPMI server installed, and DJGPP v2 requires it to run. You can either
use one of the commercial DPMI servers (e.g., run ‘gpc’ in a DOS box under MS-Windows)
or download and install CWSDPMI (‘csdpmi3b.zip’) which is a free DPMI server written for
DJGPP.

Chapter 3: The GNU Pascal Frequently Asked Questions List. 29

3.3.7 I have troubles with assembly code

The GNU Assembler (‘as.exe’), or ‘gas’, called by GCC accepts “AT&T” syntax which is
different from “Intel” syntax. Differences are discussed in section 17.1 of the DJGPP FAQ.

A guide is available which was written by Brennan Mr. Wacko Underwood
brennan@mack.rt66.com and describes how to use inline assembly programming with
DJGPP, at this URL: http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_
djgpp.html

There’s also a GPC assembler tutorial at
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Section 17.3 of the DJGPP FAQ discusses some methods to convert “Intel” syntax to “AT&T”
syntax.

However, please note that assembler code is unportable, i.e. it will work on TA32 (“x86")
and compatible processors if written for them, but will not even compile for other processors.
So by writing assembler code in your programs, you will limit their usefulness substantially.

If you think you “need” assembler code for speed — and you’ve checked that your assembler
code actually runs faster than Pascal code compiled with suitable optimizations — you might
want to put both Pascal and assembler versions of the critical sections in your program, and let,
e.g., an ‘{$ifdef 13863} decide which one to use. This way, your program will at least compile
on all processors.

3.3.8 Tell me how to do DPMI, BIOS and other DOS related things.

DPMI, BIOS and other functions are no different than other system functions. Refer to the
GPC Manual on how to access your system’s C-library. This small example shows how to use
DPMI, copying some structures and function prototypes of ‘<dpmi.h>":

program DPMIDemo;
{ Only for DJGPP }
{$x+3}

{ ‘Byte’ is ‘unsigned char’ in C,
‘ShortCard’ is ‘unsigned short’ in C,
‘MedCard’ is ‘unsigned long’ in C,
‘Word’ is ‘unsigned’ in C,
etc. (all these types are built-in). }

type
TDpmiVersionRet = record
Major : Byte;
Minor : Byte;
Flags : ShortCard;
CPU : Byte;

Master_PIC: Byte;
Slave_PIC : Byte;
end;

type
TDpmiFreeMemInfo = record
LargestAvailableFreeBlockInBytes,

mailto:brennan@mack.rt66.com
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

30 The GNU Pascal Manual

MaximumUnlockedPageAllocationInPages,
MaximumLockedPageAllocationInPages,
LinearAddressSpaceSizeInPages,
TotalNumberOfUnlockedPages,
TotalNumberOfFreePages,
TotalNumberOfPhysicalPages,
FreelLinearAddressSpaceInPages,
SizeOfPagingFilePartitionInPages,
Reservedl,
Reserved?2,
Reserved3: MedCard;

end;

function DpmiGetVersion (var Version: TDpmiVersionRet): Integer;
asmname ’__dpmi_get_version’;

function DpmiGetFreeMemoryInformation
(var MemInfo: TDpmiFreeMemInfo): Integer;
asmname ’__dpmi_get_free_memory_information’;

var
Version: TDpmiVersionRet;
MemInfo: TDpmiFreeMemInfo;

begin
if DpmiGetVersion (Version) = O then
begin
WriteLn (’CPU type: >, Version.cpu, ’86’);
Writeln (’DPMI major: >, Version.Major);
WriteLn (°DPMI minor: >, Version.Minor) ;
end
else

Writeln (’Error in DpmiGetVersion’);
if DpmiGetFreeMemoryInformation (MemInfo) = O then
Writeln (’Free DPMI memory: ’,
MemInfo.TotalNumberOfFreePages, ’ pages.’)
else
Writeln (’Error in DpmiGetMemoryInformation’);
end.

3.3.9 I got an exception when accessing an ‘array [1 .. 4000000] of
Byte’.
Per default, the maximum stack size of a DJGPP application is 256K. If you need more, you
have to adjust it with the stubedit program, i.e.:
stubedit your_app.exe minstack=5000K

Another way is to add the following code to your program to define a minimum stack size
(here: 2 MB). This value will be honored even if a user sets a lower value by using stubedit, so
this method might be a little safer.

Note: The syntax given here is valid for GPC releases of May 2000 and newer.
{$ifdef DIGPP}

Chapter 3: The GNU Pascal Frequently Asked Questions List. 31

const
MinStackSize: Cardinal = $200000; asmname ’_stklen’;
{$endif}

Still, it might be a good idea to use pointers for large structures, and allocate the memory
at runtime.

DJGPP has to allocate the stack in physical memory at program startup, so one might have
to be careful with too large stack limits. Most other systems allocate stack pages on demand,
so the only reason to set a limit at all might be to prevent a runaway recursion from eating up
all memory . ..

On Unix-like systems, you can set a resource limit, but you don’t do it in normal programs,
but rather in the shell settings (bash: ‘ulimit’; csh: ‘limit’; syscall: ‘setrlimit’(2)).

3.4 Strings

3.4.1 What’s this confusion about strings?

Turbo Pascal strings have a length byte in front. Since a byte has the range 0 .. 255,
this limits a string to 255 characters. However, the Pascal string schema, as defined in section
6.4.3.3.3 of the ISO-10206: 1990 Extended Pascal standard, is a schema record:

type
String (Capacity: Integer) = record
Length: O .. Capacity;
String: packed array [1 .. Capacity + 1] of Char
end;

The ‘+ 1’ is a GPC extension to make it feasible to automatically add the ‘#0’ terminator
when passing or assigning them to CStrings. Thus at the expense of a little added complexity
(must declare capacity, don’t use ‘GetMem’ without explicit initialization of the ‘Capacity’ field,
and the additional space requirement) you can now have very long strings.

3.4.2 Overlaying strings in variant records

Q: Should the different variants in a variant record overlay in the same memory? Previous
Pascals T have used have guaranteed this, and I've got low-level code that relies on this. The
variants are not the same length, and they are intended not to be.

A: No, this is intentional so that the discriminants are not overwritten, and they can be
properly initialized in the first place. Consider:

record
case Boolean of
False: (sl1: String (42));
True: (s2: String (99));
end;

If the strings would overlay, in particular their discriminants would occupy the same place
in memory. How should it be initialized? Either way, it would be wrong for at least one of the
variants . . .

So, after a discussion in comp.lang.pascal.ansi-iso where this topic came up concerning file
variables (which also require some automatic initialization and finalization), we decided to do
this in GPC for all types with automatic initialization and finalization (currently files and
schemata, in the future this might also be Delphi compatible classes and user-defined initialized
and finalized types), since the standard does not guarantee variants to overlay, anyway . . .

32 The GNU Pascal Manual

There are two ways in GPC to get guaranteed overlaying (both non-standard, of course, since
the standard does not assume anything about internal representations; both BP compatible),
‘absolute’ declarations and variable type casts. E.g., in order to overlay a byte array ‘b’ to a
variable ‘v’:

var
b: array [1 .. SizeOf (v)] of Byte absolute v;
Or you can use type-casting:
type
t = array [1 .. SizeOf (v)] of Byte;
then ‘¢t (v)’ can be used as a byte array overlayed to ‘v’.

3.4.3 Why does ‘s[0]’ not contain the length?

Q: In standard Pascal you expect ‘s[1]’ to align with the first character position of ‘s’ and
thus one character to the left is the length of ‘s’. Thus ‘s[0]’ is the length of ‘s’. True?

A: This holds for UCSD/BP strings (which GPC does not yet implement, but that’s planned).
The only strings Standard Pascal knows are arrays of char without any length value.

GPC also supports Extended Pascal string schemata (see Section 3.4.1 [String schemal,
page 31), but they also don’t have a length byte at “position 07, but rather a ‘Length’ field
(which is larger than one byte).

3.4.4 Watch out when using strings as parameters

Q: Any “gotchas” with string parameters?

A: Be careful when passing string literals as parameters to routines accepting the string as
a value parameter and that internally modify the value of the parameter. Inside the routine,
the value parameter gets a fixed capacity — the length of the string literal that was passed to it.
Any attempt to assign a longer value will not work.

This only applies if the value parameter is declared as ‘String’. If it is declared as a string
with a given capacity (e.g., ‘String (255)’), it gets this capacity within the routine.

3.4.5 Support for BP compatible short strings

Q: Two different kinds of strings with the same name — ‘String’ — does make a bit of
confusion. Perhaps the oldstyle strings could be renamed ‘short string’ ?

A: When we implement the short strings, we’ll have to do such a distinction. Our current
planning goes like this:

‘String (n)’: string schema (EP compatible)
‘String [n]’: short string (UCSD/BP compatible, where n must be <= 255)

‘String’: dependent on flags, by default undiscriminated schema, but in BP mode (or with
a special switch) short string of capacity 255 (UCSD/BP compatible).

Q: So when will these short strings be available?
A: It’s been planned for over a year. The delay has been caused by more pressing problems.

3.4.6 What about C strings?

A C string (‘char *’) is an array of char, terminated with a ‘#0’ char.

C library functions require C, not Pascal style string arguments. However, Pascal style strings
are automatically converted to C style strings when passed to a routine that expects C style
strings. This works only if the routine reads from the string, not if it modifies it.

Chapter 3: The GNU Pascal Frequently Asked Questions List. 33

E.g., this is how you could access the ‘system()’ call in your C library (which is not necessary
anymore, since ‘Execute’ is already built-in):

program SysCall;
function System (Name: CString): Integer; asmname ’system’;

var
Result: Integer;

begin

Result := System (°1ls -1’);

WriteLn (’system() call returned: ’, Result)
end.

You could use the type ‘PChar’ instead of ‘CString’. Both ‘CString’ and ‘PChar’ are prede-
fined as ‘"Char’ — though we recommend ‘CString’ because it makes it clearer that we're talking
about some kind of string rather than a single character.

A lot of library routines in Pascal for many applications exist in the GPC unit and some
other units. Where available, they should be preferred (e.g. ‘Execute’ rather than ‘system()’,
and then you won’t have to worry about ‘CString’s.)

Do not pass a C style string as a ‘const’ or ‘var’ argument if the C prototype says ‘const
char *’ or you will probably get a segfault.

3.5 Getting Help

Please read the GPC Manual (info files or other formats) as well as the ‘README’ and ‘BUGS’

files that come with GPC (usually installed in directory ‘/usr/local/doc/gpc’), plus other
docs that might help (the DJGPP FAQ if you use DJGPP, etc.) before you send email to the
maintainers or mailing list.

In particular, the ‘BUGS’ file contains information on how to submit bug reports in the most
efficient way.

The ‘Support’ chapter of the GPC Manual tells you where to find more information about
GPC and how to contact the GPC developers. (see Chapter 10 [Support], page 433)

3.6 Miscellaneous

3.6.1 I want to contribute; where do I start?

If you want to contribute, please write to the mailing list, Section 10.1 [Mailing List], page 433.

3.6.2 Where is the GNU Pascal web site?

The GPC homepage on the web, for information and downloads, is
http://www.gnu-pascal.de.

The GPC To-Do list, listing the latest features and fixed bugs can also be found there.

3.6.3 About this FAQ

Current Maintainer: Russ Whitaker russ@ashlandhome.net

http://www.gnu-pascal.de
mailto:russ@ashlandhome.net

34 The GNU Pascal Manual

This is the second incarnation of the GNU Pascal FAQ list, based on the previous FAQ by
J.J. van der Heijden. Comments about, suggestions for, or corrections to this FAQ list are
welcome.

Please make sure to include in your mail the version number of the document to which your
comments apply (you can find the version at the beginning of this FAQ list).

Many people have contributed to this FAQ, only some of them are acknowledged above.
Much of the info in, and inspiration for this FAQ list was taken from the GPC mailing list
traffic, so you may have (unbeknownst to you) contributed to this list.

Chapter 4: How to download, compile and install GNU Pascal. 35

4 How to download, compile and install GNU
Pascal.

This chapter covers:
e Downloading GPC sources or binaries
e Installation instructions for a GPC binary distribution
e Compilation of the source distribution on a Unix system
e Compilation notes for specific platforms
e Building and installing a cross-compiler
e Crossbuilding a compiler

4.1 Where and what to download

The master server for GNU Pascal is
http://www.gnu-pascal.de

Official and beta releases of the compiler with sources and binaries for many platforms as
well as other GNU Pascal related files can be found there.

You can find binary distributions for many platforms in the subdirectory
‘pinary’. The archive files are named ‘gpc-version.platform.extension’ — for example
‘gpc-2.1.alpha-unknown-linux-gnu.tar.gz’ for GPC version 2.1 on an Alpha workstation
running the Linux kernel with GNU C Library, or ‘gpc-20000616.1586-pc-djgppv201.zip’
for GPC version 20000616 on an i586 PC running DOS with DJGPP version 2.01.

After you have downloaded the correct archive file for your platform, please read the instal-
lation notes on how to install such a binary distribution.

If you are running Dos or MS Windows, you will need additional tools — see “What else to
download and where” below.

Current snapshots

GNU Pascal is subject to steady development. You can download the current snapshot
(source only, use at your own risk) from:

http://www.gnu-pascal.de/current/

What else to download and where

When you are using GNU Pascal on a DOS system, you will need either the DJGPP or the
EMX development environment (see below). On an OS/2 system, you will need EMX. On an
MS Windows 95/98/NT system you will need either the CygWin or the mingw32 environment.

GNU Pascal uses the compiler back-end from the GNU Compiler Collection, GNU CC or
GCC. If you want to compile GPC, you will need the source of GCC as well as the source of
GPC itself. From the same place as GPC, please download GCC ‘2.95.%". (It is also available
from any GNU mirror; see http://www.gnu.org/software/gcc/.)

Libraries

For some of GPC’s units, you will need some standard libraries. In particular:

Unit Platform Library

CRT Unix/terminal ncurses >= 5.0 (1), (2)
CRT Unix/X11 PDCurses (2)

CRT Dos, MS-Windows PDCurses (3)

GMP any gmp

http://www.gnu-pascal.de
http://www.gnu-pascal.de/current/
http://www.gnu.org/software/gcc/

36 The GNU Pascal Manual

RegEx any rx
(debugging) Unix, MS-Windows ElectricFence (4)
Notes:

(1) ncurses version 5.0 or newer is strongly recommended because older versions contain a
bug that severely affects CRT programs.

(2) You can install both ncurses and PDCurses on a Unix system, and choose at compile
time whether to generate a terminal or X11 version of your program.

(3) ncurses also runs under MS-Windows with CygWin (not mingw32, however), but doesn’t
appear to behave much differently from PDCurses on that platform.

(4) ElectricFence is not used by any unit, but can be used for debugging memory allocation
bugs by simply linking it (see the accompanying documentation).

You can find those libraries on many places on the Net. Also, many GNU/Linux distributions,
DJGPP mirrors and other OS distributions already contain some of the libraries. In any case,
you can find the sources of the libraries (sometimes together with patches that you should apply
before building if you choose to build from the sources) and binaries for some platforms in

http://www.gnu-pascal.de/libs/

DJGPP

DJGPP is available from any SimTel mirror in the ‘gnu/djgpp’ subdirectory; for addresses
look into the DJGPP FAQ. To use GNU Pascal you need at least

— the C library, ‘v2/djdev201.zip’, and
— ‘binutils’ (assembler, etc.), ‘v2gnu/bnu270b.zip’.

We also recommend you to get:
— the ‘make’ utility, ‘v2gnu/mak375b.zip’
— the GNU debugger, ‘v2gnu/gdb416b.zip’
— the DJGPP FAQ, ‘v2faq/faq211b.zip’
— the GRX graphics library, http://wuw.gnu.de/software/GRX/

— PENG, http://fjf.gnu.de/peng/, an integrated development environment, similar to
BP’s one, written in GNU Pascal, or

— RHIDE, ‘v2app/rhide.zip’, another integrated development environment.

EMX

EMX is an environment for creating 32-bit applications for DOS and OS/2. It is available
from:

http://www.leo.org/pub/comp/os/0s2/leo/gnu/emx+gcc/index.html
To develop EMX programs with GNU Pascal you need at least
— the EMX runtime package, ‘emxrt.zip’,
— the EMX development system, ‘emxdev*.zip’, and
— the GNU development tools, ‘gnudev*.zip’.
If your DOS box has DPMI (it does if you are using MS Windows or OS/2) you will also
need RSX, available from the same sites as EMX in the subdirectory ‘rsxnt’.

The GNU development tools contain the GNU C compiler which is in fact not needed to use
GNU Pascal. However, the C library s needed.

http://www.gnu-pascal.de/libs/
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/
http://www.gnu.de/software/GRX/
http://fjf.gnu.de/peng/
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html

Chapter 4: How to download, compile and install GNU Pascal. 37

CygWin

CygWin is an environment which implements a POSIX layer under MS Windows, giving
it large parts of the functionality of Unix. CygWin contains development tools such as an
assembler, a linker, etc. GPC needs for operation. More information about CygWin can be
found at

http://cygwin.com

mingw32

The Minimalists’ GNU Win32 environment, mingw32, allows a large number of Unix pro-
grams — including GPC and GCC — to run under MS Windows 95/98/NT using native MS
libraries. mingw32 ressources can be found at

http://wuw.mingw.org

4.2 Installation instructions for a GPC binary distribution

To install a binary distribution, cd to the root directory and unpack the archive while pre-
serving the stored directory structure. Under a Unix compatible system with GNU tar installed,
the following (performed as ‘root’) will do the job:

cd /
tar xzf archive.tar.gz

If you are using a ‘tar’ utility other than GNU tar, it might be necessary to do the above
in an explicit pipe:

cd /
gzip -c -d archive.tar.gz | tar xf -

If you want to install a GPC binary distribution in another directory than it was prepared for
(for example, if you do not have root access to the computer and want to install GPC somewhere
under your home directory), you can do the following:

— Unpack the archive file in a directory of your choice (see above).

— ‘cd’ to the “prefix” directory of the distribution (for instance ‘usr/local’).

— Run the script install-gpc-binary, available from
http://www.gnu-pascal.de/current/binary/.

— Follow the instructions in the script.

To install a ZIP archive under DOS with ‘PKunzip’, ‘cd’ the the appropriate directory (usually
‘\” for EMX, ‘\DJGPP’ for DJGPP), then call ‘PKunzip’ with the ‘-d’ option:

C:\> cd djgpp
C:\DJGPP> pkunzip -d archive.zip
where ‘archive.zip’ is the name of the distribution file.
For DJGPP you must edit your ‘djgpp.env’ in the ‘DIJGPP’ directory to complete the instal-

lation: Please copy the entries from ‘[gcc]’ to create a new ‘[gpc]’ section. The result may
look as follows:

[gecl
COMPILER_PATH=Y,/>;COMPILER_PATHY%DJDIR’,/bin
LIBRARY_PATH=%/>;LIBRARY_PATHY%%DJDIRY%/1ib

[gpc]
COMPILER_PATH=Y,/>;COMPILER_PATHY%%DJDIRY/bin

LIBRARY_PATH=},/>;LIBRARY_PATH,%DJDIR%/1ib

http://cygwin.com
http://www.mingw.org
http://www.gnu-pascal.de/current/binary/

38 The GNU Pascal Manual

If you are using the DJGPP version of GPC but do not have a ‘DIJGPP’ directory, please
download and install DJGPP (see Section 4.1 [Download|, page 35).

Binary distributions include ‘libgcc.a’ and ‘specs’, files that are normally part of GCC. If
you have GCC installed, they will be replaced unless you manually install the archive.

4.3 Compiling GPC

The preferred way to distribute GNU software is distribution of the source code. However, it
can be a non-trivial exercise to build GNU Pascal on some non-Unix systems, so we also provide
ready-to-run binaries for a number of platforms. (See Section 4.2 [Binary Distributions|, page 37
for how to install a binary distribution.)

GPC is based on the GNU Compiler Collection, GNU CC or GCC. You will need the GCC
sources to build it. It must be the same version as the one GPC is implemented with — 2.95.x
as of this writing. Although you need GCC to build the GNU Pascal compiler, you don’t need
GCC to compile Pascal programs once GNU Pascal is installed. (However, using certain libraries
will require compiling C wrappers, so it is a good idea to install the C compiler as well.)

Because GNU Pascal shares its back-end with GCC, it should run on any system supported
by GCC. A full list of platforms supported by GCC can be found in section “Chapter 47 in
“Using and Porting GNU CC”.

The GCC source can be obtained from any mirror of the GNU FTP site,
ftp://ftp.gnu.org/gnu/gcc/. The “core” distribution is sufficient for GPC.

Here is the generic procedure for installing GNU Pascal on a Unix system. See Section 4.4
(Compilation Notes|, page 40 for extra information needed to install GPC on DOS-like platforms.
1. Checking the prerequisites

Make sure that GNU make is installed. (In the following, we will simply speak of ‘make’
when invoking GNU make; you might need to call ‘gmake’ instead.)

For extracting the example programs from the documentation to the ‘doc/docdemos’ direc-
tory a non-crippled ‘sed’ is needed. GNU sed is known to work.

If you want to build the GPC WWW pages you will also need: ‘texi2html’ version
1.61 (older versions are missing some needed features; newer versions suffer from a bug),
‘texi2dvi’, TEX, ‘gzip’, ‘dvips’, ‘dviselect’, and ‘dviconcat’.

If you run into trouble during the installation process, please check whether you are using
outdated versions of the required utilities and upgrade if necessary.

The GNU versions of the packages above are available from the GNU FTP server or any of
its mirrors. Package package is usually located in the directory ‘gnu/package’.
2. Unpacking the source

From a directory of your choice (e.g. ‘/home/fred’), unpack the GCC and GNU Pascal
source distributions. This will create separate subdirectories for GCC and GPC. Let us
assume ‘gcc-2.95.1" and ‘gpc-20000535’ in this example.

% cd /home/fred

% gzip -c -d gcc-core-2.95.1.tar.gz | tar xf -

% gzip -c -d gpc-20000535.tar.gz | tar xf -
‘cd’ to the GPC directory and move the contents (a subdirectory ‘p’) to the subdirectory
‘gee’ of the GCC directory:

% cd /home/fred/gpc-20000535

% mv p /home/fred/gcc-2.95.1/gcc/
It is recommended, though not required, to use a separate directory for building the
compiler, rather than compiling in the source directory. In this example, let us create
‘/home/fred/gpc-build’ for this purpose:

ftp://ftp.gnu.org/gnu/gcc/
ftp://ftp.gnu.org

Chapter 4: How to download, compile and install GNU Pascal. 39

% mkdir /home/fred/gpc-build
If you use a separate directory, you do not need to write into the GCC source directory
once you have patched the GCC source (see below), and can build GPC for more than one
platform from the same source tree.
In case you are re-using a directory where you have already built GCC and/or GPC for a
different target machine, do ‘make distclean’ to delete all files that might be invalid. One
of the files this deletes is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does
not exist, it probably means that the directory is already suitably clean.
3. Configuring and building GCC
GNU Pascal is automatically configured with GCC. Configuration of GCC is treated in
depth in section “Chapter 4”7 in “Using and Porting GNU CC”. The normal procedure is
as follows:
‘cd’ to the GPC build directory. From there, run the ‘configure’ script in the GCC source
directory:
% cd /home/fred/gpc-build
% /home/fred/gcc-2.95.1/configure --enable-languages=pascal
This creates all the necessary config files, links and Makefile in the GCC object directory.
Note 1: The configuration will prompt you for patching the GCC source for GPC support,
so you need write access to that directory. All changes to GCC are surrounded by ‘#ifdef
GPC ... #endif’, so they should not interfere when you build a C compiler from this source
tree.
Note 2: The ‘--enable-languages=pascal’ option means that we only want to build the
Pascal compiler and not, for instance, the C++ compiler.
Note 3: The standard base directory for installing GCC and GPC is ‘/usr/local’. If
you want to install files to an alternate directory dir, specify ‘--prefix=dir’ when you run
‘configure’.
4. Putting other GNU tools in place
Some environments require other GNU tools (such as the GNU assembler or linker) instead
of the standard system tools for GCC to work. (See the GCC installation instructions for
details.) If this is the case for your system, install the required tools in the GPC build
directory under the names ‘as’, ‘ld’, or whatever is appropriate. This will enable the
compiler to find the proper tools for compilation of the program ‘enquire’ (a part of GCC)
and to install the GNU tools to a place where they are found by GCC but do not interfere
with the standard system tools.
Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.
5. Compiling GPC
Once you are satisfied with the configuration as determined by ‘configure’, you can build
the compiler:

% make

Notice that this procedure will build the C compiler (and maybe some other compilers) too,
because that is used to compile the GPC runtime library.

Optionally, you may supply CFLAGS, LDFLAGS or RTSFLAGS. CFLAGS is used for com-
piler and RTS, RTSFLAGS are for RTS only, i.e.: ‘make CFLAGS="-02" RTSFLAGS=-Wall’

6. Completing the installation
When everything has been compiled, you can check the installation process with:
% make -n install

To complete the installation, run the command ‘make install’. You need write ac-
cess to the target directories (‘/usr/local/bin’, ‘/usr/local/lib’, ‘/usr/local/info’,
‘/usr/local/doc’, and ‘/usr/local/man’ in this example), so this is usually done as ‘root’:

40 The GNU Pascal Manual

% su -c "make install"

If you want to install only the Pascal compiler (for example if you already have the cor-
rect version of GCC installed), ‘cd’ to the ‘gcc’ subdirectory of the build directory (e.g.
‘/home/fred/gpc-build/gcc’) and run ‘make pascal.install’. This installation process
does not overwrite existing copies of ‘libgcc.a’ or ‘specs’, should they exist.

There is a (partial) translation of the GPC manual into Croatian available now. It is not
installed by default. If you want to install it, do a ‘pascal.install-hr’ in the ‘gcc’ direc-
tory. This will install the manpage ‘gpc—hr.1’ and the info documentation ‘gpc-hr.infox*’.
Other formats like PS, PDF and HTML can be built manually (it’s also easy to add appro-
priate make targets for them when needed).

Also from the ‘gcc’ subdirectory you can do some more “exotic” builds. For instance, you
can build the GPC WWW pages by typing ‘make pascal.html’ or a binary distribution by
typing ‘make pascal.bindist’. See the ‘Makefile’ in that directory for more examples.

4.4 Compilation notes for specific platforms

4.4.1 MS-DOS with DJGPP

The only compiler that is capable of compiling the GNU Compiler Collection (GNU CC
or GCC) under MS-DOS is GCC itself. In order to compile GPC or GCC for MS-DOS with
DJGPP you will therefore need either a working copy of DJGPP installed, or you will have to
cross-build from a non-MS-DOS system.

Building GPC under MS-DOS with DJGPP follows the same scheme as building GPC under
a Unix-like system: Place the ‘p’ subdirectory in the ‘gcc’ directory and follow the instructions
for compiling GCC. This requires ‘bash’ and many other tools installed, and you must be very
careful at many places to circumvent the limitations of the DOS platform.

Our preferred way to build GPC for DJGPP is to cross-build it from a Unix-like platform —
which is much easier. For instructions, see Section 4.5 [Cross-Compilers|, page 41 and Section 4.6
[Crossbuilding], page 41.

4.4.2 MS-DOS or 0OS/2 with EMX

EMX is a free 32-bit DOS extender which adds some properties of Unix to MS-compatible
DOS and IBM’s OS/2 operating systems.

As of this writing, we are not aware of current versions of GCC for EMX, and EMX support
in GPC has not been maintained. Please contact us if you know about recent development in
EMX and are interested in continuing EMX support in GPC.

4.4.3 MS Windows 95/98 /NT

There are two ports of the GNU development tools to MS Windows 95/98/NT: CygWin and

mingw32.

The CygWin environment implements a POSIX layer under MS Windows, giving it large
parts of the functionality of Unix. Thus, compiling GCC and GPC under the CygWin envi-
ronment can be done following the instructions for compiling it under a Unix-like system (see
Section 4.3 [Compiling GPC], page 38).

The Minimalists’ GNU Win32 environment, mingw32, uses the native ‘crtd11.d11’ library of
MS Windows. It is much smaller than CygWin, but it is not self-hosting and must be crossbuilt
from another system (see Section 4.6 [Crossbuilding], page 41).

Chapter 4: How to download, compile and install GNU Pascal. 41

4.5 Building and Installing a cross-compiler

GNU Pascal can function as a cross-compiler for many machines. In-
formation about GNU tools in a cross-configuration can be found at
‘ftp://ftp.cygnus.com/pub/embedded/crossgecc/’.

Since GNU Pascal generates assembler code, you need a cross-assembler that GNU Pascal can
run, in order to produce object files. If you want to link on other than the target machine, you
need a cross-linker as well. It is straightforward to install the GNU binutils to act as cross-tools
— see the installation instructions of the GNU binutils for details.

You also need header files and libraries suitable for the target machine that you can in-
stall on the host machine. Please install them under ‘prefix/platform/include/’, for instance
‘/usr/local/i386-pc-msdosdjgpp/include/’ for a cross-compiler from a typical Unix-like en-
vironment to MS-DOS with DJGPP.

Configuration and compilation of the compiler can then be done using the scripts ‘cfgpc’
and ‘mkgpc’ which are included in the source distribution in the subdirectory ‘p/script’. Please
call them with the ‘-h’ option for instructions.

4.6 Crossbuilding a compiler.

Using a cross-compiler to build GNU Pascal results in a compiler binary that runs on the
cross-target platform. This is called “crossbuilding”. A possible reason why anybody would
want to do this, is when the platform on which you want to run the GNU Pascal compiler is not
self-hosting. An example is mingw32.

To crossbuild GNU Pascal, you have to install a cross-compiler for your target first, see
Section 4.5 [Cross-Compilers|, page 41.
As when building a cross-compiler, configuration and compilation of the compiler can be

done using the scripts ‘cfgpc’ and ‘mkgpc’ which are included in the source distribution in the
subdirectory ‘p/script’. Please call them with the ‘-h’ option for instructions.

42

The GNU Pascal Manual

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 43

5 A QuickStart Guide from Borland Pascal to GNU
Pascal.

This chapter is intended to be a QuickStart guide for programmers who are familiar with
Borland Pascal.

Throughout the manual, we talk of “Borland Pascal” or “BP” for short, to refer to Borland
Pascal version 7 for Dos protected mode. Other versions of Borland Pascal and Turbo Pascall
don’t differ too much, but this one was the very last Dos version Borland has published, so in
most if not all cases, you can safely substitute the version you're familiar with.

“Borland Pascal” and “Turbo Pascal” are registered trademarks of Borland Inc.

5.1 BP Compatibility

GNU Pascal (GPC) is compatible to version 7 of Borland Pascal (BP) to a large extent and
comes with portable replacements of the BP standard units.

However, BP is a 16-bit compiler while GPC is a 32/64-bit compiler, so the size of the
‘Integer’ type, for instance, is 16 bits in BP, but at least 32 bits in GPC. If a BP program has
been designed with portability in mind from the ground up, it may work with GPC without any
change. Programs which rely on byte order, on the internals or sizes of data types or which use
unportable things like interrupts and assembler code, will need to be changed. The following
section lists the possible problems with solutions.

The GPC Run Time System (RTS) is fairly complete, and you can use all libraries written
for GNU C from GNU Pascal, so there is much less need to use unportable constructs than there
was in BP. (For example, BP’s Turbo Vision library uses assembler to call a local procedure
through a pointer. With GPC you can do this in Pascal just as with global procedures.) Please
do not throw away the advantage of full portability by sticking to those workarounds.

We have successfully ported real-world projects (with several 10000s of lines) from BP to
GPC, so this is possible for you, too.

5.2 BP Incompatibilities

This sections lists the remaining incompatibilities of GPC to BP, and the problems you might
encounter when porting BP programs from 16-bit Dos to other platforms, and gives solutions
for them.

By incompatibilites we mean problems that can arise when trying to compile a valid BP
program with GPC. Of course, there are many features in GPC that BP doesn’t know, but we
call them extensions unless they can break valid BP programs, so they are not mentioned here.
The subsequent sections of the ‘Borland Pascal’ chapter mention a number of useful extensions
that you might want to know about but which will not break your BP code.

Some of the differences can be “overcome” by command-line switches. As a summary:

--borland-pascal -w --uses=System -D__BP_TYPE_SIZES__ --pack-struct
-D__BP_RANDOM__ -D__BP_UNPORTABLE_ROUTINES__ -D__BP_PARAMSTR_O

But please read the following notes, and don’t use these switches indiscriminately when not
necessary. There are reasons why they are not GPC’s defaults.

5.2.1 String type

GPC’s internal string format (Extended Pascal string schema) is different from BP’s. BP
compatible short strings will be implemented in GPC soon, but in the meantime, you’ll have to
live with the difference. In general, GPC’s format has many advantages (no length limit of 255
characters, constant and reference parameters always know about their capacity, etc.), but you
will see differences if you:

44 The GNU Pascal Manual

— declare a variable as ‘String’ without a capacity. However, GPC will assume 255 then (like
BP) and only warn about it (and not even this when using ‘--borland-pascal’, see below),
so that’s not a real problem. The “clean” way, however, is to declare ‘String [255] " when
you mean so (but perhaps you'll prefer ‘String (2000)’? :—).

— access “character 0” which happens to hold the length in BP. This does not work with
string schemata. Use ‘Length’ to get the length, and ‘SetLength’ to modify it.

— try to ‘FillChar’ a string, e.g. ‘FillChar (StringVar, 256, 0);’, which would overwrite
the ‘Capacity’ field. Using ‘FillChar (StringVar([1], ...);’ is alright since it accesses
the characters of the string, not the ‘Capacity’ and ‘Length’ fields. If you want to set the
length to zero, use ‘SetLength’ (see above) or simply assign an empty string (‘StringVar
:=77). This is more efficient than clearing all the characters, anyway, and has the same
effect for all normal purposes.

— try to read or write strings from/to binary files (‘Text’ files are no problem). You will
have to rewrite the code. If you also want to get rid of the 255 character limit and handle
endianness issues (see below) in one go, you can use the ‘ReadStringLittleEndian’ etc.
routines (see Section 7.13 [Run Time System], page 128), but if you need BP compatible
strings (i.e., with a one-byte length field) in data files, you cannot use them (but you can
easily modify them for this purpose).

5.2.2 Qualified identifiers

GPC does not yet support qualified identifiers. They will be implemented soon. In the
meantime, just don’t use them, sorry. (In general, using the same global identifier in different
units can easily be confusing, so it’s not bad practice to avoid this, anyway.)

5.2.3 Assembler

GPC’s inline assembler is not compatible to BP’s. It uses AT&T syntax, supports a large
variety of processors and works together with GPC’s optimizer. So, either convert your inline
assembly to AT&T syntax, or (usually better) to Pascal, or put it into an external file which
you can assemble with your favourite (32 bit) assembler. A tutorial for using the GPC inline
assembler is available at
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Since many things you usually do with assembler in BP are provided by GPC’s Run Time
System (RTS), you will not need the inline assembler as often as in BP. (See Section 5.23
[Portability hints], page 61.)

The same applies to BP’s ‘inline’ directive for hand-written machine code. GPC’s ‘inline’
directive works for Pascal routines (see Section 5.21 [Miscellaneous|, page 59), so you’ll have to
convert any hand-written machine code to Pascal (and thereby make it more readable, portable
and easier to maintain while still getting the performance of inline code).

5.2.4 Move; FillChar

GPC supports ‘Move’ and ‘FillChar’, and they’re fully BP compatible. However, some
data structures have different internal formats which may become relevant when using these
procedures. E.g., using ‘Move’ on file variables does not work in GPC (there are reasons why
assigning file variables with ‘:=" is not allowed in Pascal, and circumventing this restriction
with ‘Move’ is not a good idea). For other examples, see Section 5.2.1 [String type|, page 43,

Section 5.2.5 [Real type], page 45, and Section 5.2.11 [Endianness assumptions], page 46.

http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 45

5.2.5 Real type

GPC does not support BP’s 6-byte ‘Real’ type. It supports ‘Single’, ‘Double’ and
‘Extended’ which, at least on the IA32 and some other processors, are compatible to BP.

For BP’s 6-byte ‘Real’ type, GPC’s ‘System’ unit provides an emulation, called ‘BPReal’,
as well as conversion routines to GPC’s ‘Real’ type (which is the same as ‘Double’), called
‘RealToBPReal’ and ‘BPRealToReal’. You'll probably only need them when reading or writing
binary files containing values of the BP 6-byte real type. There are no operators (e.g., ‘+)
available for ‘BPReal’, but since GPC supports operator overloading, you could define them
yourself (e.g., convert to ‘Real’, do the operation, and convert back). Needless to say that this
is very inefficient and should not be done for any serious computations. Better convert your
data after reading them from the file and before writing them back, or simply convert your data
files once (the other types are more efficient even with BP on any non-prehistoric processor,
anyway).

5.2.6 Graph unit

A mostly BP compatible ‘Graph’ unit exists as part of the ‘GRX’ package. It is known to work
under DJGPP, Cygwin, mingw, Linux/IA32 with svgalib, and should work under any Unix
system with X11 (tested under Linux, Solaris, AIX, etc.).

There is a small difference in the color numbering, but it should be easy to work-around:
You can’t assume, e.g., that color 1 is always blue, and 2 is green, etc. On a system with 15
or more bits of color depth (i.e., 32768 or more colors, which most PCs today have), they will
all be very dark shades of blue. This is not really a bug, but simply a property of modern high
colors modes (whereas BP’s ‘Graph’ unit was only designed for 16 and 256 color modes).

However, the names ‘Blue’, ‘Green’ etc. stand for the correct colors in the ‘Graph’ unit of
GRX. They are no constants, but functions (because the color depth is in general not known
until runtime), so you can’t use them in contexts where constants are expected. Also, they
might conflict with the identifiers of the ‘CRT’ unit if you use both units at the same time. If you
want to use computed color values in the range 0 ... 15, you can translate them to the correct
colors using the ‘EGAColor’ function.

5.2.7 OOP units

The OOP stuff (Turbo Vision etc.) is not yet completed, but work on several projects is
underway. If you want information about the current status or access to development source,
please contact the GPC mailing list.

5.2.8 Keep; GetIntVec; SetIntVec

The routines ‘Keep’, ‘GetIntVec’ and ‘SetIntVec’ in the ‘Dos’ unit do not even make sense on
DJGPP (32 bit Dos extender). If your program uses these, it is either a low-level Dos utility for
which porting to a 32 bit environment might cause bigger problems (because the internal issues
of DPMI become relevant which are usually hidden by DJGPP), or it installs interrupt handlers
which will have to be thought about more carefully because of things like locking memory,
knowing about and handling the differences between real and protected mode interrupts, etc.
For these kinds of things, we refer you to the DJGPP FAQ (see section “DJGPP FAQ” in the
DJGPP FAQ).

5.2.9 TFDDs

The internal structure of file variables (‘FileRec’ and ‘TextRec’ in BP’s ‘Dos’ unit and
‘TFileRec’ and ‘TTextRec’ in BP’s ‘WinDos’ unit) is different in GPC. However, as far as Text

46 The GNU Pascal Manual

File Device Drivers (TFDDs) are concerned, GPC offers a more powerful mechanism. Please
see the RTS reference (see Section 7.13 [Run Time System], page 128), under ‘AssignTFDD’.

5.2.10 Mem; Port; Ptr; Seg; Ofs; PrefixSeg; etc.

Those few routines in the ‘System’ unit that deal with segmented pointers (e.g., ‘Ptr’) are
emulated in such a way that such ugly BP constructs like

PInteger (Ptr (Seg (a), Ofs (a) + 6 * SizeOf (Integer)))” = 42

work in GPC, but they do not provide access to absolute memory addresses. Neither do
‘absolute’ variables (which take a simple address in the program’s address space in GPC,
rather than a segmented address), and the ‘Mem’ and ‘Port’ arrays don’t exist in GPC.

As a replacement for ‘Port’ on IA32 processors, you can use the routines provided in the
‘Ports’ unit, Section 7.14.12 [Ports|, page 226. If you want to access absolute memory addresses
in the first megabyte under DJGPP, you can’t do this with normal pointers because DJGPP
programs run in a protected memory environment, unless you use a dirty trick called near pointer
hack. Please see the DJIGPP FAQ (see section “DJGPP FAQ” in the DJGPP FAQ) for this and
for other ways.

For similar reasons, the variable ‘PrefixSeg’ in the ‘System’ unit is not supported. Apart
from TSRs, its only meaningful use in BP might be the setting of environment variables. GPC
provides the ‘SetEnv’ and ‘UnSetEnv’ procedures for this purpose which you can use instead of
any BP equivalents based on ‘PrefixSeg’. (However note that they will modify the program’s
own and its childs’ environment, not its parent’s environment. This is a property — most people
call it a feature — of the environments, including DJGPP, that GPC compiled programs run in.)

5.2.11 Endianness assumptions

GPC also runs on big-endian systems (see Section 7.2.11.1 [Endianness|, page 105). This
is, of course, a feature of GPC, but might affect your programs when running on a big-endian
system if they make assumptions about endianness, e.g., by using type casts (or ‘absolute’
declarations or variant records misused as type casts) in certain ways. Please see the demo
program ‘absdemo.pas’ for an example and how to solve it.

Endianness is also relevant (the more common case) when exchanging data between different
machines, e.g. via binary files or over a network. Since the latter is not easily possible in BP,
and the techniques to solve the problems are mostly the same as for files, we concentrate on files
here.

First, you have to choose the endianness to use for the file. Most known data formats have a
specified endianness (usually that of the processor on which the format was originally created).
If you define your own binary data format, you're free to choose the endianness to use.

Then, when reading or writing values larger than one byte from/to the file, you have to
convert them. GPC’s Run Time System supports this by some routines. E.g., you can read
an array from a little-endian file with the procedure ‘BlockReadLittleEndian’, or write one to
a big-endian file with ‘BlockWriteBigEndian’. Note: The endianness in the procedure names
refers to the file, not the system — the routines know about the endianness of the system they
run on, but you have to tell them the endianness of the file to use. This means you do not have
to (and must not) use an ‘ifdef’ to use the version matching the system’s endianness.

When reading or writing records or other more complicated structures, either read /write them
field by field using ‘BlockReadBigEndian’ etc., or read/write them with the regular ‘BlockRead’
and ‘BlockWrite’ procedures and convert each field after reading or before writing using proce-
dures like ‘ConvertFromBigEndian’ or ‘ConvertToLittleEndian’ (but remember, when writing,
to undo the conversion afterwards, if you want to keep using the data — this is not necessary
with ‘BlockWriteLittleEndian’ etc.).

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 47

Especially for strings, there are ready-made procedures like ‘ReadStringBigEndian’ or
‘WriteStringlittleEndian’ which will read/write the length as a 64 bit value (much space
for really long strings :—) in the given endianness, followed by the characters (which have no
endianness problem).

All these routines are described in detail in the RTS reference (see Section 7.13 [Run Time
System|, page 128), under ‘endianness’. The demo program ‘endiandemo.pas’ contains an
example on how to use these routines.

5.2.12 - -borland-pascal - disable GPC extensions

GPC warns about some BP constructs which are especially “dirty”, like misusing typed
constants as initialized variables. GPC also supports some features that may conflict with BP
code, like macros. The command line option ‘~-borland-pascal’ disables both, so you might
want to use it for a first attempt to compile your BP code under GPC. However, we suggest you
try compiling without this switch and fixing any resulting problems as soon as you’ve become
acquainted with GPC.

5.2.13 -w - disable all warnings

Even in ‘--borland-pascal’ mode, GPC may warn about some dangerous things. To disable
all warnings, you can use the ‘-w’ option (note: lower-case ‘w’!). This is not recommended at
all, but you may consider it more BP compatible . . .

5.2.14 - -uses=System - Swap; HeapError; etc.

A few exotic BP routines and declarations (e.g., ‘Swap’ and ‘HeapError’) are contained in a
‘System’ unit, Section 7.14.17 [System], page 241, which GPC (unlike BP) does not automatically
use in each program. To use it, you can add a ‘uses System;’ clause to your program. If you
don’t want to change your code, the command line option ‘--uses=System’ will do the same.

5.2.15 -D__BP_TYPE_SIZES__ - small integer types etc.

Since GPC runs on 32 and 64 bit platforms, integer types have larger sizes than in BP.
However, if you use the ‘System’ unit (see Section 5.2.14 [- -uses=System - Swap; HeapError;
etc.], page 47) and define the symbol ‘__BP_TYPE_SIZES__’ (by giving ‘-D__BP_TYPE_SIZES__’
on the command line), it will redeclare the types to the sizes used by BP. This is less efficient

and more limiting, but might be necessary if your program relies on the exact type sizes.

5.2.16 - -pack-struct - disable structure alignment

GPC by default aligns fields of records and arrays suitably for higher performance, while BP
doesn’t. If you don’t want the alignment (e.g., because the program relies on the internal format
of your structures), either declare the relevant structures as ‘packed’ (which BP also accepts,
but ignores), or give the ‘--pack-struct’ option.

5.2.17 -D__BP_RANDOM__ - BP compatible pseudo random number
generator

GPC uses a more elaborate pseudo random number generator than BP does. Using the
‘Random’ and ‘Randomize’ functions works the same way, but there is no ‘RandSeed’ variable
(but a ‘SeedRandom’ procedure). However, if you use the ‘System’ unit (see Section 5.2.14 [-
-uses=System - Swap; HeapError; etc.|, page 47) and define the symbol ‘__BP_RANDOM__’ (by
giving ‘~D__BP_RANDOM__’ on the command line), it will provide a 100% BP compatible pseudo

48 The GNU Pascal Manual

random number generator, including the ‘RandSeed’ variable, which will produce exactly the
same sequence of pseudo random numbers that BP’s pseudo random number generator does.
Even the ‘Randomize’ function will then behave exactly like in BP.

5.2.18 -D_BP_UNPORTABLE_ROUTINES__ - Intr; DosVersion; etc.

A few more routines in the ‘Dos’ and ‘WinDos’ units besides the ones mentioned under Sec-
tion 5.2.8 [Keep:; GetlntVec; SetIntVec|, page 45, like ‘Intr’ or ‘DosVersion’, are meaningless
on non-Dos systems. By default, the ‘Dos’ unit does not provide these routines (it only provides
those that are meaningful on all systems, which are most of its routines, including the most
commonly used ones). If you need the unportable ones, you get them by using the ‘System’
unit (see Section 5.2.14 [- -uses=System - Swap; HeapError; etc.], page 47) and defining the
Synﬂool‘__BP_UNPORTABLE_ROUTINES__’(by giving ‘~D__BP_UNPORTABLE_ROUTINES__’ on the
command line). If you use ‘Intr’ or ‘MsDos’, your program will only compile under DJGPP
then. Other routines, e.g. ‘DosVersion’ are emulated quite roughly on other systems. Please
see the notes in the ‘Dos’ unit (see Section 7.14.2 [Dos|, page 187) for details.

5.2.19 -D__BP_PARAMSTR 0__ - BP compatible ParamStr (0)
behaviour

In BP (or under Dos), ‘ParamStr (0)’ always contains the full path of the current executable.
Under GPC, by default it contains what was passed by the caller as the Oth argument — which
is often the name of the executable, but that’s merely a convention, and it usually does not
include the path.

If you use the ‘System’ unit (see Section 5.2.14 [- -uses=System - Swap; HeapError; etc.],
page 47) and define the symbol ‘__BP_PARAMSTR_O__’ (by giving ‘-D__BP_PARAMSTR_O__’ on
the command line), it will change the value of ‘ParamStr (0)’ to that of ‘ExecutablePath’,
overwriting the value actually passed by the caller, to imitate BP’s/Dos’s behaviour. However
note: On most systems, ‘ExecutablePath’ is not guaranteed to return the full path, so defining
this symbol doesn’t change anything. In general, you cannot expect to find the full executable
path, so better don’t even try it, or your program will (at best) run on some systems. For most
cases where BP programs access their own executable, there are cleaner alternatives available.

5.3 IDE versus command line

On the Dos (DJGPP) and Linux platforms, you can use RHIDE for GNU Pascal; check the
subdirectories of your DJGPP distribution.

Unfortunately, there is no IDE which would run on all platforms. We are working on it, but
this will take some time. Please be patient — or offer your help!

Without an IDE, the GNU Pascal Compiler, GPC, is called about like the command-line
version of the Borland Pascal Compiler, BPC. Edit your source file(s) with your favorite ASCII
editor, then call GNU Pascal with a command line like

C:\GNU-PAS> gpc hello.pas -o hello.exe
on your Dos or OS/2 box or

myhost:/home/joe/gnu-pascal> gpc hello.pas -o hello
on your Unix (or Unix-compatible) system.

Don’t omit the ‘.pas’ suffix: GPC is a common interface for a Pascal compiler, a C, ObjC
and C++ compiler, an assembler, a linker, and perhaps an Ada and a FORTRAN compiler. From
the extension of your source file GPC figures out which compiler to run. GPC recognizes Pascal
sources by the extension ‘.pas’, ‘.p’, ‘.pp’ or ‘.dpr’.

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 49

The -o is a command line option which tells GPC how the executable has to be named. If
not given, the executable will be called ‘a.out’ (Unix) or ‘a.exe’ (Dos). However, you can use
the ‘--executable-file-name’ to tell GPC to always call the executable like the source (with
the extension removed under Unix and changed to ‘.exe’ under Dos).

Note that GPC is case-sensitive concerning file names and options, so it will not work if you
type
C:\GNU-PAS> GPC HELLO.PAS -0 HELLO.EXE

GPC is a very quiet compiler and doesn’t print anything on the screen unless you request it
or there is an error. If you want to see what is going on, invoke GPC with additional options:

-Q "don’t be quiet" (or: Quassel-Modus in German)

(with capital ‘Q’!) means that GPC prints out the names of procedures and functions it processes,
and

--verbose
or abbreviated
-v
means that GPC informs you about the stages of compilation, i.e. preprocessing, compiling,
assembling, and linking.
One example (this time for OS/2):
[C:\GNU-Pascall] gpc --verbose -Q hello.pas

Throughout this chapter, we will tell you about a lot of command-line switches. They are
all invoked this way.

After compilation, there will be an executable hello file in the current directory. (hello.exe
on Dos or OS/2.) Just run it and enjoy. If you're new to Unix, please note that the current
directory is not on the PATH in most installations, so you might have to run your program
as ‘./hello’. This also helps to avoid name conflicts with other programs. Such conflicts are
especially common with the program name ‘test’ which happens to be a standard utility under
Unix that does not print any output. If you call your program ‘test.pas’, compile it, and then
invoke ‘test’, you will usually not run your program, but the utility which leads to mysterious
problems. So, invoke your program as ‘./test’ or, better yet, avoid the name ‘test’ for your
programs.

If there are compilation errors, GNU Pascal will not stop compilation after the first one —
as Borland Pascal does — but try to catch all errors in one compilation. If you get more error
messages than your screen can hold, you can catch them in a file (e.g. gpc.out) or pipe them
to a program like ‘more’ in the following way:

gpc hello.pas 2> gpc.out

This works with OS/2 and any bash-like shell under Unix; for Dos you must get a replacement
for command. com which supports this kind of redirection, or use the ‘redir’ utility (see also the
DJGPP FAQ, section “DJGPP FAQ” in the DJGPP FAQ.):

C:\GNU-PAS> redir -eo gpc hello.pas -o hello.exe | more

You can also use Borland’s IDE for GNU Pascal on the Dos platform: Install the GNU Pascal
Compiler in the Tools menu (via Options/Tools).

Name: GNU Pascal

Path: gpc

Arguments: $SAVE ALL --executable-file-name $NAME ($EDNAME) .pas
HotKey: Shift+F9

Note once more that GPC is case-sensitive, so it is important to specify .pas instead of the
.PAS Borland Pascal would append otherwise!

You can include more command-line arguments to GNU Pascal (e.g. ‘-—automake’; see below)
as you will learn more about them.

50 The GNU Pascal Manual

Since Borland Pascal will try to recompile your program if you use its Run menu function,
you will need another tool to run your program:

Name: Run Program

Path: command . com
Arguments: /c $NAME($EDNAME)
HotKey: Shift+F10

5.4 Comments

GPC supports comments surrounded by ‘{ }" and ‘(* %)’ just like BP does. According to
the ISO 7185 and ISO 10206 standards, Pascal allows comments opened with (* and closed
with }. Borland Pascal does not support such mixed comments, so you might have sources
where passages containing comments are “commented out” using the other kind of comment
delimiters. GPC’s default behaviour is (like BP) not to allow mixed comments, so you don’t
need to worry about this. However, if you happen to like mixed comments, you can turn them
on either by a command-line option, or by a compiler directive:

--mixed-comments {$mixed-comments} (*$mixed-comments*)

GPC supports nested comments (e.g., ‘{ foo { bar } baz }’), but they are disabled by default
(compatible to BP which doesn’t know nested comments at all). You can enable them with the
option ‘--nested-comments’ (or the equivalent compiler directive)

GPC also supports Delphi style comments starting with ‘//’ and extending until the end
of the line. This comment style is activated by default unless one of the ‘~-classic-pascal’,
‘--extended-pascal’, ‘--object-pascal’ or ‘--borland-pascal’ dialect options is given. You
can turn them on or off with the ‘--[no-]delphi-comments’ option.

5.5 BP Compatible Compiler Directives

All of BP’s one-letter compiler directives are supported by GPC, though some of them are
ignored because they are not necessary under GPC. Besides, GPC supports a lot more directives.
For an overview, see Section 7.9 [Compiler Directives|, page 115.

5.6 Units, GPI files and AutoMake

You can use units in the same way as in Borland Pascal. However, there are some additional
features.

Concerning the syntax of a unit, you can, if you want, use Extended Pascal syntax to specify
a unit initializer, i.e., instead of writing

begin

end.
at the end of the unit, you can get the same result with

to begin do
begin

end;
and there also exists

to end do
begin

end;

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 51

which specifies a finalization routine. You can use this instead of Borland Pascal’s exit proce-
dures, but for compatibility, the included ‘System’ unit also provides the ‘ExitProc’ variable.
The ‘to begin do’ and/or ‘to end do’ parts must be followed by the final ‘end.’. See Sec-
tion 7.1.8.1 [Modules|, page 85, for information about Extended Pascal modules, an alternative
to units.

When GPC compiles a unit, it produces two files: an .o object file (compatible with other
GNU compilers such as GNU C) plus a .gpi file which describes the interface.

If you are interested in the internal format of GPI file, see Section 12.7 [GPI files|, page 481.

If you want to compile a program that uses units, you must “make” the project. (This is the
command-line switch ‘-M’ or the IDE keystroke ‘F9’ in BP.) For this purpose, GPC provides the
command-line switch ‘--automake’:

gpc -—automake hello.pas

If you want to force everything to be rebuilt rather than only recompile changed files (‘-B’
or “build” in BP), use ‘--—autobuild’ instead of ‘--automake’:

gpc -—autobuild hello.pas
For more information about the AutoMake mechanism, see Section 12.8 [AutoMakel,
page 484.
If you do not want to use the AutoMake mechanism for whatever reason, you can also compile
every unit manually and then link everything together.

GPC does not automatically recognize that something is a unit and cannot be linked; you
have to tell this by a command line switch:

-C only compile, don’t link.

(If you omit this switch when compiling a unit, you only get a linker error message ‘undefined
reference to ‘main’’. Nothing serious.)

For example, to compile two units, use:
gpc -c myunitl.pas myunit2.pas

When you have compiled all units, you can compile a program that uses them without using
‘——automake’:

gpc hello.pas

However, using ‘-—automake’ is recommended, since it will recompile units that were modi-

fied.
You could also specify the program and the units in one command line:
gpc hello.pas myunitl.pas myunit2.pas

One of the purposes of writing units is to compile them separately. However, GNU Pascal
allows you to have one or more units in the same source file (producing only one .o file but
separate .gpi files). You even can have a program and one or more units in one source file; in
this case, no .o file is produced at all.

5.7 Optimization

GNU Pascal is a 32/64 bit compiler with excellent optimization algorithms (which are identi-
cally the same as those of GNU C). There are six optimization levels, specified by the command
line options ‘-0’, ‘=02, ..., ‘-06’.

One example:

program OptimizationDemo;

procedure Foo;
var

52 The GNU Pascal Manual

A, B: Integer;
begin

A := 3;

B := 4;

WritelLn (A + B)
end;

begin
Foo
end.

When GNU Pascal compiles this program with optimization (‘-03’), it recognizes that the
argument to ‘WriteLn’ is the constant 7 — and optimizes away the variables A and B. If the
variables were global, they would not be optimized away because they might be accessed from
other places, but the constant 7 would still be optimized.

For more about optimization, see the GNU C documentation.

5.8 Debugging

3

The command line option ‘-g’ specifies generation of debugging information for GDB, the
GNU debugger. GDB comes with its own documentation. Currently, GDB does not understand
Pascal syntax, so you should be familiar with C expressions if you want to use it.

See also “Notes for debugging” in the “Programming” chapter; see Section 7.12 [Notes for
Debugging], page 127.

Sometimes it is nice to have a look at the assembler output of the compiler. You can do
this in a debugger or disassembler (which is the only way to do it in BP), but you can also tell
GPC to produce assembler code directly: When you specify the =S command line option, GPC
produces an .s file instead of an .o file. The .s file contains assembler source for your program.
More about this in the next section.

5.9 Objects

Objects in the Borland Pascal 7.0 notation are implemented into GNU Pascal with the
following differences:
e the ‘private’, ‘protected’, ‘public’ and ‘published’ directives are recognized but ignored,
e data fields and methods may be mixed:
type
MyObj = object
x: Integer;
procedure Foo; virtual;

y: Real;
function Bar: Char;
end;

5.10 Strings in BP and GPC

Strings are “Schema types” in GNU Pascal which is something more advanced than Borland-
style strings. For variables, you cannot specify just String as a type like in Borland Pascal;
for parameters and pointer types you can. There is no 255 characters length limit. According
to Extended Pascal, the maximum string length must be in (parentheses); GNU Pascal accepts
[brackets], too, however, like BP.

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 53

For more about strings and schema types see Section 7.2.10.6 [Schema Types|, page 97.

GPC supports Borland Pascal’s string handling functions and some more (see Section 7.10.2
[String Operations], page 120):

Borland Pascal GNU Pascal

Length Length

Pos Pos, Index (1)

Str Str, WriteStr (1) (2)

Val Val, ReadStr (2)

Copy Copy, SubStr, MyStr[2 .. 7] (3)

Insert Insert

Delete Delete

MyStr[0] := #7 SetLength (MyStr, 7)

=, <>, <, <=, >, >= =, <>, <, <=, >, >=(4)
EQ, NE, LT, LE, GT, GE

n/a Trim

Notes:

(1) The order of parameters of the Extended Pascal routines (‘Index’, ‘WriteStr’) is different
from the Borland Pascal routines.

(2) ‘ReadStr’ and ‘WriteStr’ allow an arbitrary number of arguments, and the arguments
are not limited to numbers. ‘WriteStr’ also allows comfortable formatting like ‘WriteLn’ does,
e.g. ‘WriteStr (Dest, Foo : 20, Bar, 1/3 : 10 : 2)".

(3) ‘SubStr’ reports a runtime error if the requested substring does not fit in the given string,
‘Copy’ does not (like in BP).

(4) By default, the string operators behave like in BP. However, if you use the option
‘--no-exact-compare-strings’ or ‘--extended-pascal’, they ignore differences of trailing
blanks, so, e.g., ‘’foo’’ and ‘’foo ’’ are considered equal. The corresponding functions (‘EQ’,
...) always do exact comparisons.

5.11 Typed Constants

GNU Pascal supports Borland Pascal’s “typed constants” but also Extended Pascal’s initial-
ized variables:

var
x: Integer value 7;

or

var
x: Integer = 7;

When a typed constant is misused as an initialized variable, a warning is given unless you
specify ‘--borland-pascal’.

When you want a local variable to preserve its value, define it as ‘static’ instead of using a
typed constant. Typed constants also become static automatically for Borland Pascal compati-
bility, but it’s better not to rely on this “feature” in new programs. Initialized variables do not
become static automatically.

program StaticDemo;

procedure Foo;
{ x keeps its value between two calls to this procedure }
var
x: static Integer = 0;
begin

54 The GNU Pascal Manual

Writeln (x);
Inc (x)
end;

begin
Foo;
Foo;
Foo;

end.

For records and arrays, GPC supports both BP style and Extended Pascal style initializers.
When you initialize a record, you may omit the field names. When you initialize an array, you
may provide indices with a :. However, this additional information is ignored completely, so
perhaps it’s best for the moment to only provide the values . . .

program BPInitVarDemo;
{$W no-field-name-problem} { avoid a warning by GPC }
const
A: Integer = 7;
B: array [1 .. 3] of Char
C: array [1 .. 3] of Char
Foo: record
x, y: Integer;
end = (x: 3; y: 4);
begin
end.

()F), 70), 707);
’Bar’;

5.12 Bit, Byte and Memory Manipulation

)

The bitwise operators ‘shl’, ‘shr’, ‘and’, ‘or’, ‘xor’ and ‘not’ work in GNU Pascal like in
Borland Pascal. As an extension, you can use them as procedures, for example

program AndProcedureDemo;
var x: Integer;
begin

and (x, $0000ffff);
end.

as an alternative to

program AndOperatorDemo;
var x: Integer;
begin

x := x and $0000ffff;
end.

GPC accepts the BP style notation ‘$abcd’ for hexadecimal numbers, but you also can use
Extended Pascal notation:

program EPBaseDemo;

const
Binary = 2#11111111;
Octal = 8#177;
Hex = 16#ff;
begin
end.

and so on up to a basis of 36. Of course, you can mix the notations as you like, e.g.:

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 55

program BPEPBaseDemo;
begin
WritelLn ($cafe = 2#1100101011111110)
end.
‘Inc’ and ‘Dec’ are implemented like in Borland Pascal. ‘Pred’ and ‘Succ’ are generalized
according to Extended Pascal and can have a second (optional) parameter:

procedure SuccDemo;
var a: Integer = 42;

begin
a := Succ (a, 5);
WriteLn (a) { 47 }
end.

BP style ‘absolute’ variables work in the context of overloading other variables as well as in
the context of specifying an absolute address, but the latter is highly unportable and not very
useful even in Dos protected mode.

program BPAbsoluteDemo;

type
TString = String (80);
TTypeChoice = (t_Integer, t_Char, t_String);

{ @@ WARNING: BAD STYLE! }
procedure ReadVar (var x: Void; TypeChoice: TTypeChoice);
var
xInt: Integer absolute x;
xChar: Char absolute x;
xStr: TString absolute x;
begin
case TypeChoice of
t_Integer: Readln (xInt);
t_Char : ReadLn (xChar);
t_String : Readln (xStr);
end
end;

var
i: Integer;
c: Char;
s: TString;

begin
ReadVar (i, t_Integer);
ReadVar (c, t_Char);
ReadVar (s, t_String);
Writeln (i, ’> ’, ¢, > 7, 8)
end.

GNU Pascal knows Borland Pascal’s procedures FillChar and Move. However, their use
can be dangerous because it often makes implicit unportable assumptions about type sizes,
endianness, internal structures or similar things. Therefore, avoid them whenever possible.
E.g., if you want to clear an array of strings, don’t ‘FillChar’ the whole array with zeros (this
would overwrite the Schema discriminants, see Section 7.14.15 [Strings|, page 234), but rather

56

The GNU Pascal Manual

use a ‘for’ loop to assign the empty string to each string. In fact, this is also more efficient than
‘FillChar’, since it only has to set the length field of each string to zero.

5.13 User-defined Operators in GPC

GNU Pascal allows the user to define operators according to the Pascal-SC syntax:

program PXSCOperatorDemo;

type
Point = record
X, y: Real;
end;

operator + (a, b: Point) c: Point;

begin
c.X :
c.y :

end;

a.x + b.x;
a.y + b.y;

var
a, b, c: Point

(42, 0.5);

begin
c :=a+b
end.

The Pascal-SC operators ‘“+>’, ‘+<’, etc. for exact numerical calculations are not implemented,

but you can define them.

5.14 Data Types in BP and GPC

e Integer types have different sizes in Borland and GNU Pascal:

Borland Pascal GNU Pascal Bits (1)
ShortInt ByteInt 8
Integer ShortInt 16
LongInt Integer 32
Comp LongInt, Comp 64
Byte Byte 8
Word ShortWord 16
n/a Word 32
n/a LongWord 64

Signed
yes
yes
yes
yes
no

no

no

no

(1) The size of the GNU Pascal types may depend on the platform. The sizes above apply

to 32 bit platforms, including the TA32.

If you care for types with exactly the same size as in Borland Pascal, take a look at the

‘System’ unit and read its comments.

You can get the size of a type with ‘Size0f’ in bytes (like in Borland Pascal) and with
‘BitSize0f’ in bits, and you can declare types with a specific size (given in bits), e.g.:

program IntegerSizeDemo;
type

MyInt = Integer (42); { 42 bits, signed }

MyWord

Word (2); { 2 bits, unsigned, i.e., 0 .. 3 %}

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 57

MyCard = Cardinal (2); { the same }

HalfInt = Integer (BitSizeOf (Integer) div 2);
{ A signed integer type which is half as big as the normal
‘Integer’ type, regardless of how big ‘Integer’ is
on any platform the program is compiled on. }

begin
end.
e Borland’s real (floating point) types are supported except for the 6-byte software Real type
(but the ‘System’ unit provides conversion routines for it). GNU Pascals’s ‘Real’ type has
8 bytes on the TA32 and is the same as ‘Double’. In addition there are alternative names
for real types:

Borland Pascal GNU Pascal

Single Single, ShortReal

Real n/a (1)

Double Double, Real

Extended Extended, LongReal
Comp LongInt, Comp (see above)

(1) But see ‘BPReal’, ‘RealToBPReal’ and ‘BPRealToReal’ in GPC’s System unit.

e Complex numbers: According to Extended Pascal, GNU Pascal has built-in complex num-
bers and supports a number of mathematical functions on them, e.g. ‘Abs’, ‘Sqr’, ‘SqRt’,
‘Exp’, ‘Ln’, ‘Sin’, ‘Cos’, ‘ArcTan’.

e Record types: GNU Pascal by default aligns 32-bit fields on 4-byte addresses because this
improves performance. So, e.g., the record

type
MyRec = record
f, o, oo: Boolean;
Bar: Integer
end;

has 8 bytes, not 7. Use the —-pack-struct option or declare the record as ‘packed’ to force
GPC to pack it to 7 bytes. However, note that this produces somewhat less efficient code on
the IA32 and far less efficient code on certain other processors. Packing records and arrays
is mostly useful only when using large structures where memory usage is a real concern, or
when reading or writing them from/to binary files where the exact layout matters.

5.15 BP Procedural Types

In addition to BP’s procedural types, GNU Pascal has pointers to procedures:

type
FuncPtr = “function (Real): Real;

The differences between procedure pointers and procedural types are only syntactical:

e In the first case, one can pass/assign a procedure/function with ‘@myproc’, in the latter
case just with ‘myproc’ (which can lead to confusion in the case of functions — though GPC
should always recognize the situation and not try to call the function).

~9

e In the first case, one can call the routine via ‘myprocptr”’, in the latter case just with

‘myprocvar’.

e To retrieve the address of a procedure stored in a variable, one can use ‘myprocptr’ in the
first case and ‘@myprocvar’ in the latter.

58 The GNU Pascal Manual

e If for some reason, one needs the address of the variable itself, in the first case, that’s
obtained with ‘@myprocptr’, in the second case with ‘@@myprocvar’!

e Bottom line: BP style procedural types are simpler to use in normal cases, but somewhat
strange in the last example.

One can use both kinds in the same program, of course, though it is recommended to stick
to one kind throughout to avoid maximum confusion.

GNU Pascal also supports Standard Pascal’s procedural parameters (see Section 5.20 [Special
Parameters], page 59).

Furthermore, GNU Pascal allows you to call even local procedures through procedural point-
ers, variables or parameters without reverting to any dirty tricks (like assembler, which is nec-
essary in BP).

The differences between the various kinds of procedural types, pointers and parameters are

demonstrated in the demo program ‘procvardemo.pas’. An example for calling local routines
through procedural parameters can be found in the demo program ‘iteratordemo.pas’.

5.16 Files

e GPC supports files like in Borland Pascal, including untyped files, ‘BlockRead’,
‘BlockWrite’ and ‘Assign’. Instead of ‘Assign’, you can also use the ‘Bind’ mechanism of
Extended Pascal.

Besides the routines supproted by BP, there are many more routines available that deal
with files, file names and similar things in a portable way. In contrast to Borland Pas-
cal, you don’t have to use any platform-specific units to do these kinds of things, though
portable emulations of those units (e.g., of the ‘Dos’ and ‘WinDos’ units) are also available
for compatibility.

5.17 Built-in Constants

e The ‘MaxInt’, ‘MaxLongInt’, ‘Pi’ constants are supported like in BP.

e Other built-in constants: GNU Pascal has ‘MaxChar’, ‘MaxReal’, ‘MinReal’, ‘EpsReal’ and
a number of other useful constants.

5.18 Built-in Operators in BP and GPC

Besides the operators found in Borland Pascal, GNU Pascal supports the following operators:

e Exponentiation: According to Extended Pascal, GNU Pascal supports the exponentiation
operators pow and ** which do not exist in Borland Pascal. You can use x pow y for integer
and x ** y for real or complex exponents. The basis may be integer, real or complex in
both cases.

e GNU Pascal has a symmetric set difference operator setl >< set2. For more about this,
see Section 7.10.7 [Set Operations|, page 124.

5.19 Built-in Procedures and Functions

e ‘GetMem’ and ‘FreeMem’ are supported like in BP. ‘GetMem’ can also act as a function in
GNU Pascal:

program GetMemFunctionDemo;
var p: Pointer;
begin

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 59

p := GetMem (1024)
end.

The second parameter to ‘FreeMem’ is ignored by GNU Pascal and may be omitted. Memory
blocks are always freed with the same size they were allocated with.

Remark: Extended Pascal Schema types provide a cleaner approach to most of the appli-
cations of ‘GetMem’ and ‘FreeMem’.

e ‘Min’ and ‘Max’: GNU Pascal has built-in ‘Min’ and ‘Max’ functions (two arguments) which
work for all ordinal types (‘Integer’, ‘Char’, ...) plus ‘Real’.

e ‘UpCase’, ‘High’, ‘Low’ and similar functions are built-in. In contrast to Borland Pascal,
GNU Pascal’s ‘UpCase’ function is aware of non-ASCII characters of certain languages
(e.g., accented letters and “umlauts”), but for compatibility this feature is disables in
‘-—borland-pascal’ mode. There is also a ‘LoCase’ function.

e ‘Lo’, ‘Hi’, ‘Swap’ functions: not built-in, but available in the ‘System’ unit.

5.20 Special Parameters

e Untyped reference parameters can be denoted by
procedure Foo (var x);
like in Borland Pascal. In GNU Pascal, you can also use
procedure Foo (var x: Void);
e GNU Pascal defines ellipsis parameters for variable argument lists:
procedure Foo (a: Integer; ...);

However, GPC does not (yet) provide a portable mechanism to access the additional argu-
ments.

e Structured function return values: According to Extended Pascal, GNU Pascal allows func-
tions to return records and arrays.

e BP style open array parameters
procedure Foo (a: array of Integer);

are implemented. However, Standard Pascal ‘conformant array parameters’ are usually
a cleaner mechanism to pass arrays of variable size.

e Besides BP compatible procedural types and procedure pointers (see Section 5.15 [BP Pro-
cedural Types|, page 57), GNU Pascal supports Standard Pascal’s procedural parameters:

procedure DrawGraph (function f (x: Real): Real);

5.21 Miscellaneous

e Headlines: According to Extended Pascal, a program headline must contain the program’s
parameters:

program Foo (Input, Output);
begin
end.
In GNU Pascal, headline parameters are optional. If the headline is omitted entirely, a
warning is given unless you have specified ‘~-borland-pascal’ in the command line.
e ‘case’ statements: In a ‘case’ statement, GNU Pascal allows otherwise (according to
Extended Pascal) as an alternative to else:

program CaseOtherwiseDemo;
var x: Integer;

60

The GNU Pascal Manual

begin
Readln (x);
case x of
1: WriteLn (’one’);
2: Writeln (Ptwo’);
otherwise
Writeln (’many’)
end
end.

Note: In the absence of a ‘case’ or ‘otherwise’ branch, missing cases labels cause an error
in Extended Pascal (which goes unnoticed in Borland Pascal). GPC does not give this
error, but a warning if the ‘~Wswitch’ option is given, however only for enumeration types.

Character constants: BP compatible character constants like ‘"M’ as well as ‘#13’ are im-
plemented into GNU Pascal.

Sets: GNU Pascal has a Card function for sets which counts their elements. Unlike Borland
Pascal, GNU Pascal does not limit sets to the range 0 .. 255.

Inline: GNU Pascal allows “inline” Pascal procedures and functions, while Borland Pascal
only allows machine code to be inlined:

Borland Pascal:

function Max (x, y: Integer): Integer;
inline ($58 / $59 / $3b / $cl1 / $7f / $01 / $91);

GNU Pascal:

program InlineDemo;

inline function Max (x, y: Integer): Integer;

begin
if x > y then
Max := x
else
Max :=y
end;
begin
WritelLn (Max (42, 17), ’ ’, Max (-4, -2))
end.

(Actually, a more general ‘Max’ function is already built-in.)

This feature is not so important as it might seem because in optimization level 3 or higher
(see Section 6.2 [GPC Options|, page 69), GNU Pascal automatically inlines short proce-
dures and functions.

5.22 BP and Extended Pascal

Pascal is a well-known programming language and hardly needs to be described here. Note,

however, that there is a large difference between the language used by the BP compiler and the
Pascal Standards.

Extended Pascal is a standardized language based on the original Standard Pascal, but with

significant extensions. Unfortunately, Borland Pascal does not conform to any of the Pascal
standards. Writing a program that both complies to Extended Pascal (or even Standard Pascal)
and compiles with BP is almost impossible for any non-trivial task.

Chapter 5: A QuickStart Guide from Borland Pascal to GNU Pascal. 61

On the other hand, BP has some nice features that make it very powerful in the environments
in which it runs. However, some of those features are of little use on non-Dos systems and would
not be good candidates for standardization.

There are also several BP features which are semantically similar to features in Standard
Pascal or Extended Pascal, but syntactically different.

Therefore, in order to be useful to users coming from either side, GPC supports both the
standards and the BP dialect as good as possible. By default, GPC allows features from any di-
alect it knows. By giving a dialect option such as ‘--borland-pascal’ or ‘--extended-pascal’,
you can tell GPC to disable the features not found in that dialect, and to adjust its warning
behaviour to the dialect.

The different sets of reserved words are a little problem, but GPC solves it by making the
words in question only “conditionally reserved” which works transparently without problems in
most cases. Still, giving a dialect option will disable all keywords not part of this dialect.

Apart from this, there are surprisingly few real conflicts between the dialects. Therefore, you
can usually compile your BP code without the ‘--borland-pascal’ option and make use of all
of GPC’s features. You might be surprised, though, when GPC accepts things you didn’t know
were allowed. :—)

Finally, if you want to make use of some of GPC’s extensions (compared to BP) and still
keep the code compileable with BP without using ‘ifdef’s all over the place, we suggest you
look at the unit ‘gpc-bp.pas’, shipped with GPC, which contains BP versions of some of GPC’s
features. Please read the comments at the beginning of the unit to find out more about it.

5.23 Portability hints

GPC offers you the possibility to make your code fully portable to each of the many platforms
supported by GPC. It would be a pity not to make use of this.

This section lists some known pitfalls that often hinder otherwise well-written programs
to take full advantage of GPC. If you have never used any compiler but Borland Pascal and
similar compilers, some of the advices might look strange to you. But this is just the same
level of strangeness that your old programs will have for you once you have understood the
principles of cross-platform portability. Remember that many tricks you have always been
applying almost automatically in Borland Pascal were necessary to overcome certain limitations
of the Dos platform and to compensate for the compiler’s missing optimization. Programming
with an optimizing compiler like GPC for platforms without a 64 kB limit is a completely new
experience — and perhaps it is among the reasons why you are now working with GPC in the
first place?

Portability — why?

Okay — but why should I bother and make my program portable? I know that all who want to
use my program are running WXYZ-OS anyway.

Yes, but that’s the result of a self-fulfilling prophecy. It depends on you whether it will
always remain like this or not. Consider a program ABC written for a single platform, WXYZ-
OS. Naturally, only WXYZ-OS-users get interested in ABC. The author gets feedback only from
WXYZ-OS users and does not see any reason to make the program cross-platform. Then people
realize that if they want to run ABC they must move to WXYZ-OS. The author concludes that
people only want WXYZ-OS programs, and so on.

To break out, just create a portable version of your program now. Then all OSes have equal
chances to show their abilities when running your program, and your customers can choose their
OS. Then, maybe, they decide to use your program just for the reason that they can be sure
that it will run on all present and future platforms and not only on a specific one — who knows?

62 The GNU Pascal Manual

My program is a tool specifically designed to make the best of the STUYV feature of WXYZ-OS.
There is no point in making it portable.

How much do you know about non-WXYZ-OSes? Just ask an expert how the STUV feature
is named elsewhere. Be sure, if it is of value, it exists almost everywhere.

Low-level features

I am using a lot of low-level stuff in my programs, so they cannot be portable.

You do not use those low-level routines directly in your high-level routines, do you? There
should always be a layer “in-between” that encapsulates the low-level routines and present an
API to your program that exactly reflects the needs of your application. This “API in between”
is the point where you can exchange the low-level routines by portable calls to GPC’s Run Time
System.

If you do not have such a layer in-between, then the API of the low-level routines you call
are your first approximation for such a layer. If you have ever thought “it would be great if
that API function had that additional parameter”, then your own extended version of that API
function that has that parameter can become part of your “API in between”. But then don’t
stop here: Certainly the API of the OS is not ideal for your program’s needs. Just create more
routines that encapsulate all OS-specific stuff . ..

When the low-level stuff in question consists of interrupts, assembler and similar things, then
the first thing you need is a portable replacement of the functionality. Fortunately, GPC covers
many things already in Pascal that require assembler in Borland Pascal:

e GPC(C’s libraries come with source. You do not need to learn assembler and to write a
complete replacement for the CRT unit if you only want to adapt some tiny detail in the
behavior of CRT to your personal needs.

e GPC’s Run Time System is fairly complete. For example, to extract the assigned name of
a ‘File’ variable, you do not need to mess around with the internal representation of those
variables, but you can type ‘uses GPC’ and then use the ‘FileName’ function. In the same
unit, you will find a ‘FileExists’ function and much more.

e Manually “constructing” an object is covered by the ‘SetType’ procedure in GPC. This is
where Turbo Vision uses assembler to load an object from a stream.

e (alling local procedures and functions via pointers simply works in GPC. This is another
place where, for instance, Turbo Vision’s ‘ForEach’ method uses assembler, while GPC lets
you do the same thing in Pascal.

e Interfacing with the OS can be done through library calls. GPC’s built-in functions and
the GPC unit offer a rather complete set of routines. And again: You have the source of
all this.

e Using ‘FillChar’ and ‘Move’ does not necessarily speed up your programs. Using them
to circumvent restrictions of the language (e.g. for direct assignments between variables of
object or file type) is asking for trouble. ‘FillChar’ was created in UCSD Pascal to set
consecutive chars in a string to the same value, and ‘Move’ was created to move the chars
within the same string. Better do not use them for other purposes.

Chapter 6: Command Line Options supported by GNU Pascal. 63

6 Command Line Options supported by GNU
Pascal.

GPC is a command-line compiler, i.e., to compile a program you have to invoke ‘gpc’ passing
it the name of the file you want to compile, plus options.

GPC supports all command-line options that GCC knows. For a complete reference and
descriptions of all options, see section “GCC Command Options” in the GCC Manual. Below,
you will find a list of the additional options that GPC supports, and a list of GPC’s most
important options (including some of those supported by GCC as well).

You can mix options and file names on the command line. For the most part, the order
doesn’t matter. Order does matter, e.g., when you use several options of the same kind; for
example, if you specify ‘~L’ more than once, the directories are searched in the order specified.
Note: Since many options have multiletter names; multiple single-letter options may not be
grouped as is possible with many other programs: ‘-dr’ is very different from ‘-d -r’.

Many options have long names starting with ‘==’ or, completely equivalent ‘-f’. E.g.,
‘--mixed-comments’ is the same as ‘~fmixed-comments’. Some options tell GPC when to give
warnings, i.e. diagnostic messages that report constructs which are not inherently erroneous but
which are risky or suggest there may have been an error. Those options start with ‘-W’.

Most GPC specific options can also be changed during one compilation by using compiler
directives in the source, e.g. ‘{$X+}’ or ‘{$extended-syntax}’ for ‘--extended-syntax’ (see
Section 7.9 [Compiler Directives|, page 115).

GPC understands the same environment variables GCC does (see section “Environment
Variables Affecting GCC” in the GCC manual). In addition, GPC recognizes
‘GPC_EXEC_PREFIX’ with the same meaning that ‘GCC_EXEC_PREFIX’ has to GCC. GPC also
recognizes ‘GCC_EXEC_PREFIX’, but ‘GPC_EXEC_PREFIX’ takes precedence.

Some of the long options (e.g., ‘~—unit-path’) take an argument. This argument is separated
with a ‘= sign, e.g.:

—-unit-path=/home/foo/units

6.1 GPC options besides those of GCC.

The following table lists the command line options GPC understands in addition to those
understood by GCC.

--classic-pascal-level-0
Reject conformant arrays and anything besides ISO-7185 Pascal.

--classic-pascal
Reject anything besides ISO-7185 Pascal.

--standard-pascal-level-0
Reject conformant arrays and anything besides ISO-7185 Pascal.

--standard-pascal
Reject anything besides ISO-7185 Pascal.

--extended-pascal
Reject anything besides ISO-10206 Extended Pascal.

--object-pascal
Reject anything besides (the implemented parts of) ANSI draft Object Pascal.

--borland-pascal
Try to emulate Borland Pascal, version 7.0.

—--delphi Try to emulate Borland Pascal, version 7.0, with some Delphi extensions.

64 The GNU Pascal Manual

--pascal-sc
Be strict about the implemented Pascal-SC extensions.

--gnu-pascal
Undo the effect of a previous ‘--foo-pascal’, ‘--delphi’ or ‘--pascal-sc’ switch.

--debug-tree
(For GPC developers.) Show the internal representation of a given tree node (name
or address).

--debug-gpi
(For GPC developers.) Show what is written to and read from GPI files (huge
output!).

--debug-automake
(For GPC developers.) Give additional information about the actions of automake.

--debug-source
Output the source while it is processed.

--no-debug-info
Inhibit ‘-g’ options (temporary work-around, this option may disappear in the fu-
ture).

--progress-messages
Output source file names and line numbers while compiling.

—--progress-—bar
Output number of processed lines while compiling.

-—autolink
Automatically link object files provided by units/modules or ‘{$L ...} (default).

--no-autolink
Do not automatically link object files provided by units/modules/{$L ...}

-—automake
Automatically compile changed units/modules/{$L ...} files and link the object
files provided.

—--no-automake
Same as ‘——no-autolink’.

—--autobuild
Automatically compile all units/modules/‘{$L ...}’ files and link the object files
provided.

—--no—-autobuild
Same as ‘——no-autolink’.

-—amtmpfile
(Internal switch used for AutoMake).

-—extended-syntax
Enable certain ‘dangerous’ features such as ignoring function results, pointer arith-
metic or using ‘CString’s as strings (same as ‘{$X+1}’).

--no-extended-syntax
Disable the dangerous features enabled by ‘--extended-syntax’ (default; same as

{$x-1").

--signed-char
Let ‘Char’ be a signed type.

Chapter 6: Command Line Options supported by GNU Pascal. 65

--no-signed-char
Let ‘Char’ be an unsigned type.

--unsigned-char
Let ‘Char’ be an unsigned type.

--no-unsigned-char
Let ‘Char’ be a signed type.

--short-circuit
Guarantee short-circuit Boolean evaluation (default; same as ‘{$B-1}’).

--no-short-circuit
Do not guarantee short-circuit Boolean evaluation (same as ‘{$B+}’).

--mixed-comments
Allow comments like ‘{ ... *)’ as required in ISO Pascal (default in ISO 7185/10206
Pascal mode).

--no-mixed-comments
Ignore ‘{” and ‘}’ within ‘(x ... *)’ comments and vice versa (default).

—--nested-comments
Allow nested comments like ‘{ { } }’ and ‘(x (x %) *)’.

--no-nested-comments
Do not allow nested comments (default).

--delphi-comments
Allow Delphi style ‘//’ comments (default).

--no-delphi-comments
Do not allow Delphi style ‘//’ comments.

--macros Expand macros (default).

--nO-Macros
Do not expand macros (default with ‘--borland-pascal’ or ‘--delphi’).

--ignore-function-results
Do not complain when a function is called like a procedure.

--no-ignore-function-results
Complain when a function is called like a procedure (default).

--borland-char-constants
Allow for Borland-style character constants like ‘#27" or ‘"L’ (default).

--no-borland-char-constants
Reject Borland-style character constants like ‘#27 or ‘"L’ (default in ISO 7185,/10206
Pascal mode).

--truncate-strings
Truncate strings being assigned to other strings of too short capacity..

--no-truncate-strings
Treat string assignments to other strings of too short capacity as errors..

--exact-compare-strings
Do not blank-pad strings for comparisons.

--no-exact-compare-strings
Blank-pad strings for comparisons.

66 The GNU Pascal Manual

--double-quoted-strings
Allow strings enclosed in "\"..

--no-double-quoted-strings
Do not allow strings enclosed in "\"..

——io—checking
Do automatic run-time checks after I/O operations (same as ‘{$I+}’).

--no-io-checking
Do not check I/O operations automatically (same as ‘{$I-}’).

--read-base-specifier
In read statements, allow non-decimal input with ‘n#’ (default).

--no-read-base-specifier
In read statements, do not allow non-decimal input with ‘n#’ (default in ISO-7185
Pascal).

--read-hex
In read statements, allow hexadecimal input with ‘¢’ (default).

--no-read-hex
In read statements, do not allow hexadecimal input with ‘¢’ (default in ISO-7185
Pascal).

--read-white-space
In read statements, require whitespace after numbers.

--no-read-white-space
In read statements, do not require whitespace after numbers (default).

--write-clip-strings
In write statements, truncate strings exceeding their field width (‘Write
(SomeLongString : 3)).

--no-write-clip-strings
Do not truncate strings exceeding their field width.

--write-real-blank
Output a blank in front of positive reals in exponential form (default).

--no-write-real-blank
Do not output a blank in front of positive reals in exponential form.

--write-capital-exponent

Write real exponents with a capital ‘E’.
--no-write-capital-exponent

Write real exponents with a lowercase ‘e’.

--transparent-file-names
Derive external file names from variable names.

-—no-transparent-file-names
Do not derive external file names from variable names (default).

-—field-widths
Comma-separated list of default field widths for Integer, Real, Boolean, Longlnt,
LongReal.

--no-field-widths
Reset the default field widths.

Chapter 6: Command Line Options supported by GNU Pascal. 67

--pedantic
Reject everything not allowed in some dialect, e.g. redefinition of its keywords.

--no-pedantic
Don’t give pedantic warnings.

--stack-checking
Enable stack checking (same as ‘{$3+}’).

--no-stack-checking
Disable stack checking (same as ‘{$S-}’).

--typed-address
Make the result of the address operator typed (same as ‘{$T+}’, default).

--no-typed-address
Make the result of the address operator an untyped pointer (same as ‘{$T-1}").

--setlimit
Define the range for ‘set of Integer’ etc..

--gpc-main
External name for the program’s entry point (default: ‘main’).

--interface-only
Compile only the interface part of a unit/module and exit.

--implementation-only
Do not produce a GPI file; only compile the implementation part.

-—executable-file—name
Name for the output file, if specified; otherwise derive from main source file name.

--unit-path

Directories where to look for unit/module sources.
--no-unit-path

Forget about directories where to look for unit/module sources.
--object-path

Directories where to look for additional object (and source) files.
--no-object-path

Forget about directories where to look for additional object (and source) files.

--executable-path
Path where to create the executable file.

--no-executable-path
Create the executable file in the directory where the main source is (default).

--unit-destination-path
Path where to create object and GPI files of Pascal units.

--no-unit-destination-path
Create object and GPI files of Pascal units in the current directory (default).

--object-destination-path
Path where to create additional object files (e.g. of C files, not Pascal units).

--no-object-destination-path
Create additional object files (e.g. of C files, not Pascal units) in the current direc-
tory (default).

68 The GNU Pascal Manual

--no-default-paths
Do not add a default path to the unit and object path.

--gpi-destination-path
(Internal switch used for AutoMake).

--uses Add an implicit ‘uses’ clause.

-—init-modules
Initialize the named modules in addition to those imported regularly; kind of a
kludge.

——-cidefine
Define a case-insensitive macro.

—--csdefine
Define a case-sensitive macro.

--big-endian
Tell GPC that the system is big-endian (for those targets where it can very).

--little-endian
Tell GPC that the system is little-endian (for those targets where it can very).

--print-needed-options
Print the needed options.

-Wwarnings
Enable warnings (same as ‘{$W+}’).

-Wno-warnings
Disable warnings (same as ‘{$W-1}’).

-Wfield-name-problem
Warn about ignored field names in initializers (default).

-Wno-field-name-problem
Do not warn about ignored field names in initializers.

-Wobject-directives
Warn about unimplemented ‘private’, ‘protected’ and ‘public’ directives (de-
fault).

-Wno-object-directives
Do not warn about unimplemented ‘private’, ‘protected’ and ‘public’ directives.

-Wimplicit-abstract
Warn if an object type not declared ‘abstract’ contains an abstract method (de-
fault).

-Wno-implicit-abstract
Do not warn if an object type not ‘declared’ abstract contains an abstract method.

-Winherited-abstract
Warn if an abstract object type inherits from a non-abstract one (default).

-Wno-inherited-abstract
Do not warn warn if an abstract object type inherits from a non-abstract one.

-Wtyped-const
Warn about misuse of typed constants as initialized variables (default).

-Wno-typed-const
Do not warn about misuse of typed constants as initialized variables.

Chapter 6: Command Line Options supported by GNU Pascal. 69

-Wnear-far
Warn about use of useless ‘near’ or ‘far’ directives (default).

-Wno-near-far
Do not warn about use of useless ‘near’ or ‘far’ directives.

-Wunderscore
Warn about double/leading/trailing underscores in identifiers.

-Wno-underscore
Do not warn about double/leading/trailing underscores in identifiers.

-Wmixed-comments
Warn about mixed comments like ‘{ ... *)’.

-Wno-mixed-comments
Do not warn about mixed comments.

-Wnested-comments
Warn about nested comments like ‘{ { } }".

-Wno—-nested-comments
Do not warn about nested comments.

-Wsemicolon
Warn about a semicolon after @samp{then}, @samp{else} or @samp{do} (default).

-Wno-semicolon
Do not warn about a semicolon after @samp{then}, @amp{else} or @samp{do}.

6.2 The most commonly used options to GPC

As the most simple example, calling
gpc foo.pas

tells GPC to compile the source file ‘foo.pas’ and to produce an executable of the default
name which is ‘foo.exe’ on EMX, ‘a.exe’ on Cygwin, both ‘a.out’ and ‘a.exe’ on DJGPP,
and ‘a.out’ on most other platforms.

Users familiar with BP, please note that you have to give the file name extension ‘.pas’:
GPC is a common interface for a Pascal compiler, a C, ObjC and C++ compiler, an assembler, a
linker, and perhaps an Ada and a FORTRAN compiler. From the extension of your source file
GPC figures out which compiler to run. GPC recognizes Pascal sources by the extension ‘.pas’,
“.p’, ‘.pp’ or ‘.dpr’. GPC also accepts source files in other languages (e.g., ‘.c’ for C) and
calls the appropriate compilers for them. Files with the extension ‘.o’ or without any special
recognized extension are considered to be object files or libraries to be linked.

Another example:
gpc —-02 -Wall --executable-file-name --automake --unit-path=units foo.pas

This will compile the source file ‘foo.pas’ to an executable named ‘foo’
(‘-—executable-file-name’) with fairly good optimization (‘-02’), warning about possible
problems (‘-Wall’). If the program uses units or imports modules, they will be searched
for in a directory called ‘units’ (‘--unit-path’) and automatically compiled and linked
(‘-—automake’).

The following table lists the most commonly used options to GPC.
-—automake

Check whether modules/units used must be recompiled and do the recompilation
when necessary.

70

The GNU Pascal Manual

--unit-path=dir[:dir...]

Search the given directories for units and object files.

--object-path=dir[:dir...]

Search the given directories for object files.

—--unit-destination-path=dir

Place compiled units (GPI and object files) into the directory dir. The default is
the current directory.

--object-destination-path=dir

Place compiled object files (e.g., from C files, but not from Pascal units) into the
directory dir. The default is the directory given with ‘~-unit-destination-path’.

--executable-path=dir

-o file

Place the executable compiled into the directory dir. The default is the main source
file’s directory.

Place output in file file. This applies regardless to whatever sort of output is being
produced, whether it be an executable file, an object file, an assembler file, etc.

Since only one output file can be specified, it does not make sense to use ‘-0’ when
compiling more than one input file, unless you are producing an executable file as
output.

-—executable-file—-name [=name]

-Ldir
-Idir
-llibrary

-0[n]

g

Derive the executable file name from the source file name, or use name

as the executable file name. The difference to the ‘-o’ option is that
‘-—executable-file-name’ considers the ‘--executable-path’, while
‘-0’ does mnot and accepts a file name with directory. Furthermore,

‘--executable-file-name’ only applies to executables, not to other output
formats selected.

Search the directory dir for libraries. Can be given multiple times.
Search the directory dir for include files. Can be given multiple times.

Search the library named library when linking. This option must be placed on the
command line after all source or object files or other libraries that reference the
library.

Select the optimization level. Without optimization (or ‘-00’ which is the default),
the compiler’s goal is to reduce the compilation time and to make debugging produce
the expected results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or
change the program counter to any other statement in the same routine and get
exactly the results you would expect from the source code.

With optimization, the compiler tries to reduce code size and execution time. The
higher the value of n, the more optimizations will be done, but the longer the
compilation will take.

If you use multiple ‘-0’ options, with or without n, the last such option is the one
that is effective.

Produce debugging information suitable for ‘gdb’. Unlike some other compilers,
GNU Pascal allows you to use ‘-g’ with ‘-0’. The shortcuts taken by optimized
code may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results or
their values were already at hand; some statements may execute in different places
because they were moved out of loops. Nevertheless it proves possible to debug

Chapter 6:

-Wall

-Werror

-static

Command Line Options supported by GNU Pascal. 71

optimized output. This makes it reasonable to use the optimizer for programs still
in the testing phase.

Remove all symbol table and relocation information from the executable. Note: this
has no influence on the performance of the compiled executable.

Give warnings for a number of constructs which are not inherently erroneous but
which are risky or suggest there may have been an error. There are additional
warning options not implied by ‘-Wall’, see the GCC warning options (see section
“Options to Request or Suppress Warnings” in the GCC manual), while ‘-Wall’ only
warns about such constructs that should be easy to avoid in programs. Therefore,
we suggest using ‘-Wall’ on most sources.

Note that some warnings (e.g., those about using uninitialized variables) are never
given unless you compile with optimization (see above), because otherwise the com-
piler doesn’t analyze the usage patterns of variables.

Turn all warnings into errors.

Stop after the stage of compilation proper; do not assemble. The output is in the
form of an assembler code file for each source file. By default, the assembler file
name for a source file is made by replacing the extension with *.s’.

Compile and assemble the source files, but do not link. The output is in the form
of an object file for each source file. By default, the object file name for a source
file is made by replacing the extension with ‘.o’

On systems that support dynamic linking, this prevents linking with the shared
libraries, i.e. forces static linking. On other systems, this option has no effect.

-Dmacro [=def]

-b machine

'

Define the macro and conditional macro as def (or as ‘1’ if def is omitted).

The argument machine specifies the target machine for compilation. This is useful
when you have installed GNU Pascal as a cross-compiler.

Print (on standard error) the commands executed to run the stages of compilation.
Also print the version number of the compiler driver program and of the preprocessor
and the compiler proper.

--classic-pascal-level-0
--classic-pascal
--extended-pascal
--object-pascal
--borland-pascal
--pascal-sc

GNU Pascal supports the features of several different Pascal standards and dialects.
By default, they are all enabled. These switches tell GPC to restrict itself to the
features of the specified standard. It does not enable any additional features. Warn-
ings about constructs which would be valid in the specified dialect (e.g. assignment
to a typed constant with ‘--borland-pascal’) are suppressed.

By default, GNU Pascal allows redefinition of keywords. Each of these switches
causes GNU Pascal to forbid the redefinition of keywords of the specified standard.

Valid ISO 7185 Pascal programs should compile properly with or without
‘--classic-pascal’. However, without this option, certain GNU extensions and
Pascal features from other dialects are supported as well. With this option, they
are rejected.

These options are not intended to be useful; they exist only to satisfy pedants who
would otherwise claim that GNU Pascal fails to support the ISO Standard or is

72 The GNU Pascal Manual

not really compatible to Borland Pascal, or whatever. We recommend, rather, that
users take advantage of the extensions of GNU Pascal and disregard the limitations
of other compilers.

-pedantic-errors
Produce errors rather than warnings for portability violations. Unlike in C, this does
not imply the ‘-pedantic’ option, so you can, for instance, use ‘-pedantic-errors’
without ‘-pedantic’, but with ‘--extended-pascal’.

--gpc-main=name
Name the entry point of the main program ‘name’ instead of ‘main’ on the linker
level. This is useful, e.g., when working with some C libraries which define their own
‘main’ function and require the program’s main entry point to be named differently.
(This option should preferably be used as a compiler directive in the unit or module
which links to that strange C library, rather than be given on the command-line.)

Chapter 7: The Programmer’s Guide to GPC 73

7 The Programmer’s Guide to GPC

This chapter is still under development.

This chapter tells you how the source of a valid GNU Pascal program should look like. You
can use it as tutorial about the GNU Pascal language, but since the main goal is to document
all special GPC features, implementation-dependent stuff, etc., expect a steep learning curve.

This chapter does not cover how to compile your programs and to produce an executable —
this is discussed above in Chapter 6 [Invoking GPCJ, page 63.
7.1 Source Structures

A source file accepted by GNU Pascal may contain up to one program, zero or more 1SO-
style modules, and/or zero or more UCSD-style units. Units and modules can be mixed in one
project.

One trivial example for a valid GPC source file follows. Note that the code below may either
be in one source file, or else the unit and the program may be in separate source files.

unit DemoUnit;
interface
procedure Hello;
implementation
procedure Hello;
begin
WritelLn (’Hello, world!?’)
end;
end.

program UnitDemo;

uses
DemoUnit;

begin
Hello

end.

7.1.1 The Source Structure of Programs

A generic GNU Pascal program looks like the following:
program name (Input, Output);

import part
declaration part

begin
statement part

74 The GNU Pascal Manual

end.

The program headline may be omitted in GPC, but a warning will be given except in
‘~—borland-pascal’ mode.

While the program parameters (usually ‘Input’, ‘Output’) are obligatory in ISO Pascal if you
want to use ‘ReadLn’ and ‘WriteLn’, they are optional in GNU Pascal. GPC will warn about
such missing parameters in ‘--extended-pascal’ mode. However if you give parameters to the
program headline, they work like ISO requires.

The import part consists either of an ISO-style ‘import’ specification or a UCSD/Borland-
style ‘uses’ clause. While ‘import’ is intended to be used with interfaces exported by ISO-10206
Extended Pascal modules, and ‘uses’ is intended to be used with units, this is not enforced.
(See also [uses|, page 416, [import], page 322.)

The declaration part consists of label, constant, type, variable or subroutine declarations in
free order. However, every identifier must be declared before it is used. The only exception are
type identifiers pointing to another type identifier which may be declared below.

The statement part consists of a sequence of statements.

As an extension, GPC supports a “declaring statement” which can be used in the statement
part to declare variables (see [var|, page 418).

7.1.2 Label Declaration

A label declaration has the following look:

label
label name, ..., label;

A label declaration part starts with the reserved word label, which contains a list of labels.

See also

[label], page 330, [goto], page 318

7.1.3 Constant Declaration

A constant declaration has the following look:

const
constant identifier = constant expression;

constant identifier = constant expression;

A constant declaration part starts with the reserved word const. It declares a constant
identifier which is defined by constant expression. This expression has to be evaluatable during
compilation time, i.e. it can include numbers, parentheses, predefined operators, sets and type
casts (the last, however, is a Borland extension). In ISO-7185 Pascal, constant expression must
be a constant or a set. All Pascal Dialects but ISO-Pascal allow the use of these intrinsic
functions in constant expression:

[Abs], page 257, [Round], page 385, [Trunc|, page 410, [Chr]|, page 286, [Ord], page 357,

[Length], page 331, [Pred], page 367, [Succ], page 404, [SizeOf], page 397, [Odd], paé‘o 354.

In Borland Pascal, in the constant declaration part variables can be declared as well, which
are given an initial value. These variables are called “typed constants”. It is good style to
avoid this use, especially since Extended Pascal and GNU Pascal allow to initialize a variable
in variable declaration part or give a type a preset value on declaration.

Chapter 7: The Programmer’s Guide to GPC 75

const
FiveFoo = b;
StringFoo = ’string constant’;
AlphabetSize = Ord (°Z’) - Ord (CA’) + 1;
type
PInteger = "Integer; { Define a pointer to an Integer }
const
{ Constant which holds a pointer to an Integer at address 1234 }
AddressFoo = PInteger (1234);

e BP does not know initialized variables, only typed constants. Even worse, it allows them
to be misused as variables, without even warning. GPC supports this (unwillingly ;—), and
warns unless in ‘--borland-pascal’ mode.

An example of a typed constant:
const
i: Integer = 0;
If you want to use it as a constant only, that’s perfectly fine. However, if you modify ‘i’,
we suggest to translate the declaration to an initialized variable. The EP syntax is:

var
i: Integer value O;

GPC supports this as well as the following mixtureof dialects:
var
i: Integer = 0;
Furthermore, you can also assign initialization values to types:

program InitTypeDemo;

type
MyInteger = Integer value 42;

var
i: MyInteger;

begin
WritelLn (i)
end.

Here, all variables of type Mylnteger are automatically initialized to 0 when created.
e Arrays initializers look like this in BP:

program BPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String [20];

const
MyStrings: array [1 .. MyStringsCount] of Ident =
(’export’, ’implementation’, ’import’,

76 The GNU Pascal Manual

’interface’, ’module’);

begin
end.
And the following way in EP:

program EPArrayInitDemo;
{$W no-field-name-problem} { avoid a warning by GPC }

const
MyStringsCount = 5;

type
Ident = String (20);

var
MyStrings: array [1 .. MyStringsCount] of Ident value
[1: ’export’; 2: ’implementation’; 3: ’import’;
4: ’interface’; 5: ’module’];

begin
end.

There seem to be pros and cons to each style. GPC supports both as well as just about
any thinkable mixture of them.

Some folks don’t like having to specify an index since it requires renumbering if you want
to add a new item to the middle. However, if you index by an enumerated type, you might
be able to avoid major renumbering by hand.

See also

Section 7.1.6.4 [Subroutine Parameter List Declaration], page 79

7.1.4 Type Declaration

A type declaration looks like this:

type
type identifier = type definition;

type identifier = type definition;

or, with preset content:

type
type identifier = type definition value constant expression;

type identifier = type definition value constant expression;

A type declaration part begins with the reserved word type. It declares a type identifier
which is defined by type definition. A type definition either can be an array, a record, a schema,
a set, an object, a subrange, an enumerated type, a pointer to another type identifier or simply
another type identifier which is to alias. If a schema type is to be declared, type identifier is
followed by a discriminant enclosed in parentheses:

type identifier (discriminant) = schema type definition;

Chapter 7: The Programmer’s Guide to GPC 7

If value is specified, followed by a constant satisfying the type definition, every variable of
this type is initialized with constant expression, unless it is initialized by value itself. The
reserved word value can be replaced by ‘=", however value is not allowed in ISO-Pascal and
Borland Pascal, and the replacement by ‘=’ is not allowed in Extended Pascal.

Type declaration example

type
{ This side is the } { That side is the }
{ type declaration } { type definition }
Arrayfoo = array [0 .. 9] of Integer; { array definition }
Recordfoo = record { record definition }
Bar: Integer;
end;

{ schema def with discriminants ‘‘x, y: Integer’’ }
y g

SchemaFoo (x, y: Integer) = array [x .. y] of Integer;

CharSetFoo = set of Char; { Def of a set }
ObjectFoo object { Def of an object }
procedure DoAction;
constructor Init;
destructor Done;

end;

SubrangeFoo = -123..456; { subrange def }
EnumeratedFoo = (Pope,John,the,Second) ; { enum type def }

{ Def of a pointer to another type identifier }
PInteger = Tarrayfoo;

{ Def of an alias name for another type identifier }
IdentityFoo = Integer;

{ Def of an integer which was initialized by 123 }
InitializedFoo = Integer value 123;

See also

Section 7.2.1 [Type Definition|, page 88, Section 7.2 [Data Types|, page 88, Section 7.1.5
[Variable Declaration|, page 77

7.1.5 Variable Declaration

A variable declaration looks like this:

var
variable identifier: type identifier;

variable identifier: type identifier;
or

var
variable identifier: type definition;

variable identifier: type definition;
and with initializing value:

78 The GNU Pascal Manual

var
variable identifier: type identifier value constant expression;

variable identifier: type identifier value constant expression;
or

var
variable identifier: type definition value constant expression;

variable identifier: type definition value constant expression;

A variable declaration part begins with the reserved word var. It declares a variable identifier
whose type either can be specified by a type identifier, or by a type definion which either can
be an array, a record, a set, a subrange, an enumerated type or a pointer to an type identifier.
If value is specified followed by a constant expression satisfying the specified type, the variable
declared is initialized with constant expression. The reserved word value can be replaced by
‘=", however value is not allowed in ISO-Pascal and Borland Pascal, and the replacement by ‘=’
is not allowed in Extended Pascal.

See also

Section 7.2.1 [Type Definition], page 88, Section 7.1.4 [Type Declaration|, page 76, Section 7.2
[Data Types|, page 88, Section 7.1.7.12 [The Declaring Statement], page 84, Section 7.1.6.4
[Subroutine Parameter List Declaration], page 79

7.1.6 Subroutine Declaration

7.1.6.1 The Procedure

procedure procedure identifier;
declaration part
begin
statement part
end;

or with a parameter list:

procedure procedure identifier (parameter list) ;
declaration part
begin
statement part
end;

A procedure is quite like a sub-program: The declaration part consists of label, constant,
type, variable or subroutine declarations in free order. The statement part consists of a sequence
of statements. If parameter list is specified, parameters can be passed to the procedure and can
be used in statement part. A recursive procedure call is allowed.

See also

Section 7.1.6.2 [The Function|, page 79, Section 7.1.6.4 [Subroutine Parameter List Declara-
tion|, page 79

)

Chapter 7: The Programmer’s Guide to GPC 79

7.1.6.2 The Function

function function identifier: function result type;
declaration part
begin
statement part
end;
or with a parameter list:

function function identifier (parameter list): funcion result type;
declaration part
begin
statement part
end;

A function is a subroutine which has a return value of type function result type. It is
structured like the program: the declaration part consists of label, constant, type, variable or
subroutine declarations in free order. The statement part consists of a sequence of statements.
If parameter list is specified, parameters can be passed to the function and can be used in
statement part. The return value is set via an assignment:

function identifier := expression

Recursive function calls are allowed. Concerning the result type, ISO-7185 Pascal and Bor-
land Pascal only allow the intrinsic types, subranges, enumerated types and pointer types to
be returned. In Extended Pascal, function result type can be every assignable type. Of course,
there are no type restrictions in GNU Pascal as well. If extended syntax is switched on, functions
can be called like procedures via procedure call statement.

See also

Section 7.1.6.1 [The Procedure|, page 78, Section 7.1.6.4 [Subroutine Parameter List Decla-
ration], page 79, Section 7.2 [Data Types|, page 88

7.1.6.3 The Operator

GNU Pascal allows to define operators which can be used the infix style in expressions. For
a more detailed description, see Section 7.3 [Operators|, page 106

7.1.6.4 Subroutine Parameter List Declaration

parameter; ...; parameter

Value parameters are declared this way:
parameter identifier: parameter type

where parameters of the same type be listed, separated by commata:
parameter identifier, ..., parameter identifier: parameter type

If var is specified before a parameter, which is an USCD extension, the compiler is told to
pass the argument by reference, i.e. the parameter passed to is expected to be an L-value whose
type is parameter type if specified, else it is compatible with any type:

var parameter identifier: parameter type
or without type specification:

var parameter identifier

80 The GNU Pascal Manual

This declaration is necessary if the parameter is to be modified within a block and to hold
its value still after return. Otherwise, the parameter remains unchanged after block exit, since
it is passed by value, and therefore it is called value parameter.

A parameter of this kind is called variable parameter and corresponds to an L-value pointer
(to type identifier if specified). As a Borland Pascal extension, there are also constant parameters
which are not allowed to be changed in the related statement part. Like variable parameters,
the type needs not to be declared; in this case parameter identifier is treated as a typeless
parameter.

const parameter identifier: parameter type
or without any further type specification:
const parameter identifier
As an Extended Pascal extension, there is a way to declare procedural parameters directly:
procedure parameter identifier
or without type specification:
function parameter identifier: parameter identifier result type
Example for parameter lists:
procedure Foo (var Bar; var Baz: Integer; const Fred: Integer);

procedure Glorkl (function Foo: Integer; procedure Bar (Baz: Integer));
begin

Bar (Foo)
end;

begin
baz := Integer (Bar) + Fred
end;

See also

Section 7.2 [Data Types|, page 88

7.1.7 Statements

7.1.7.1 Assignment

The way an assignment looks like:
L-value := expression;

This statement assigns any valid expression to L-value. Make sure that the result of ex-
pression is compatible with L-value, otherwise an compilation error is reported. The ‘:=’ is
called assignment operator. As long as L-value and expression are type compatible, they are
assignment compatible for any definable type as well.

7.1.7.2 begin end Compound Statement

It looks like that:
begin
statement;
statement;

Chapter 7: The Programmer’s Guide to GPC 81

statement
end

This statement joins several statements together into one compound statement which is
treated as a single statement by the compiler. The finishing semicolon before ‘end’ can be left
out.

7.1.7.3 if Statement

This statement has the following look:

if boolean expression then
statement

or with an alternative statement:

if boolean expression then
statement1

else
statement?2

The ‘if’ ... ‘then’ statement consists of a boolean expression and a statement, which is
conditionally executed if the evaluation of boolean expression yields true.

If “if’ ... ‘then’ ... ‘else’ is concerned, statementl is executed depending on boolean
expression being true, otherwise statement2 is executed alternatively. Note: the statement
before else must not finish with a semicolon.

7.1.7.4 case Statement

case expression of
selector: statement;

selector: statement;
end

or, with alternative statement sequence:

case ordinal expression of
selector: statement;

selector: statement;
otherwise { ““else’’ instead of ‘‘otherwise’’ allowed }
statement;

statement;
end

or, as part of the invariant record type definition:
type
foo = record
field declarations
case bar: variant type of
selector: (field declarations) ;
selector: (field declarations) ;

end;

or, without a variant selector field,

82 The GNU Pascal Manual

type
foo = record
field declarations
case variant type of
selector: (field declarations) ;
selector: (field declarations) ;

end;

The case statement compares the value of ordinal expression to each selector, which can be a
constant, a subrange, or a list of them separated by commata, being compatible with the result
of ordinal expression. Note: duplicate selectors or range crossing is not allowed unless {$borland-
pascal} is specified. In case of equality the corresponding statement is executed. If otherwise is
specified and no appropriate selector matched the expression, the series of statements following
otherwise is executed. As a synonym for otherwise, else can be used. The semicolon before
otherwise is optional.

@@ 7777 The expression must match one of the selectors in order to continue, unless an
alternative statement series is specified.

For case in a variant record type definition, see Section 7.2.10.4 [Record Types|, page 95.

See also

Section 7.1.7.3 [if Statement], page 81

7.1.7.5 for Statement

For ordinal index variables:

for ordinal variable := initial value to final value do

statement

or

for ordinal variable := initial value downto final value do

statement
For sets:

for set element type variable in some set do
statement

For pointer index variables:

for pointer variable := initial address to final address do
statement
or
for pointer variable := initial address downto final address do
statement

The for statement is a control statement where an index variable assumes every value of a
certain range and for every value the index variable assumes statement is executed. The range
can be specified by two bounds (which must be of the same type as the index variable, i.e.
ordinal or pointers) or by a set.

For ordinal index variables:

— If “to’ is specified, the index counter is increased by one as long as initial value is less or
equal to final value,

if ‘downto’ is specified, it is decreased by one as long as initial value is greater or equal to
final value.

Chapter 7: The Programmer’s Guide to GPC 83

For pointer index variables:

— If ‘to’ is specified, the index counter is increased by the size of the type the index variable
points to (if it is a typed pointer, otherwise by one if it is typeless) as long as initial address
is less or equal to final address,

— if ‘downto’ is specified, it is decreased by a corresponding value as long as initial address is
greater or equal to final address.

Since gpc provides a flat memory modell, all addresses are linear, so they can be compared.
Still, such loops should be used (if at all) only for iterating through successive elements of an
array.

For sets:

— statement is executed with the index variable (which must be ordinal and of the same
type as the set elements) assuming every element in some set, however note that a set is a
not-ordered structure.

Note: A modification of the index variable may result in unpredictable action.

See also

Section 7.2.10.7 [Set Types], page 100, Section 7.6 [Pointer Arithmetics|, page 108, Sec-
tion 7.1.7.7 [repeat Statement|, page 83, Section 7.1.7.5 [for Statement|, page 82

7.1.7.6 while Statement

The while loop has the following form

while boolean expression do
statement

The while statement declares a loop which is executed while boolean expression is true.
Since the terminating condition is checked before execution of the loop body, statement may
never be executed.

See also

Section 7.1.7.7 [repeat Statement|, page 83, Section 7.1.7.5 [for Statement|, page 82

7.1.7.7 repeat Statement

repeat
statement;

statement;
until boolean expression

The repeat ... until statement declares a loop which is repeated until boolean expression is
true. Since the terminating condition is checked after execution of the loop body, the statement
sequence is executed at least once.

See also

Section 7.1.7.6 [while Statement|, page 83, Section 7.1.7.5 [for Statement|, page 82

84 The GNU Pascal Manual

7.1.7.8 asm Inline
@@ 7777

asm (StatementList: String);

The asm inline statement is a GNU extension. It requires its paramenter to be AT&T-
noted assembler statements, and therefore it is not compatible with that one of Borland Pascal.
statementlist is a string containing asm statements seperated by semicola.

7.1.7.9 with Statement

7.1.7.10 goto Statement

@@ ?777? This statement looks like this:
goto label

(Under construction.)

7.1.7.11 Procedure Call

subroutine name;

This statement calls the subroutine subroutine name which can either be a procedure or, if
GNU extended syntax is turned on, a function. In this case, the return value is ignored.

7.1.7.12 The Declaring Statement

This statement allows to declare a variable within a statement part. It looks like this:

var
variable identifier: type identifier;

or

var
variable identifier: type definition;

and with initializing value:

var
variable identifier: type identifier value expression;

or

var
variable identifier: type definition value expression;

Unlike in declaration parts, the initializing expression has not to be a constant expression.
Note that every declaring statement has to start with var. The name space of variable identifier
extends from its declaration to the end of the current matching statement sequence (which can
be a statement part (of the program, a function, a procedure or an operator) or, within that
part, a begin end compound statement, a repeat loop, or the else branch of a case statement).
This statement is a GNU extension.

See also

Section 7.2.1 [Type Definition], page 88, Section 7.2 [Data Types|, page 88

Chapter 7: The Programmer’s Guide to GPC 85

7.1.7.13 Loop Control Statements

These are
Continue;
and
Break;

These simple statements must not occur outside a loop, i.e. a for, while or repeat statement.
‘Continue’ transfers control to the beginning of the loop right by its call, ‘Break’ exits the
current loop turn and continues loop execution.

7.1.8 Import Part and Module/Unit Concept

7.1.8.1 The Source Structure of ISO-10206 Extended Pascal Modules

@@ Description missing here

A module can have one or more ‘export’ clauses and the name of an ‘export’ clause doesn’t
have to be equal to the name of the module.

Sample module code with separate interface and implementation parts:

module DemoModule interface; { interface part }

export DemoModule = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end.
module DemoModule implementation; { implementation part }

import
StandardInput;
StandardOutput;

var
Foo: FooType;

{ Note: the effect is the same as a ‘forward’ directive would have:
parameter lists and return types are not allowed in the
declaration of exported routines, according to EP. In GPC, they
are allowed, but not required. }

procedure SetFoo;

begin
Foo := f£

end;

function GetFoo;
begin

86 The GNU Pascal Manual

GetFoo := Foo
end;

to begin do
begin
foo := b9;
Writeln (’Just an example of a module initializer. See comment below’)
end;

to end do
begin
Foo := 0;
WriteLn (’Goodbye’)
end;

end.
Alternatively the module interface and implementation may be combined as follows:
module DemoMod2; { Alternative method }

export Catch22 = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end; { note: this end is required here, even if the
module-block below would be empty. }

var
Foo: FooType;

procedure SetFoo;
begin

Foo := £
end;

function GetFoo;
begin

GetFoo := Foo
end;

end.
Either one of the two methods may be used like this:
program ModuleDemo (Output);

import DemoModule;

begin
SetFoo (999);

Chapter 7: The Programmer’s Guide to GPC 87

WriteLn (GetFoo);
end.

program ModDemo2 (Output);
import Catch22 in ’demomod2.pas’;

begin
SetFoo (999);
WriteLn (GetFoo);
end.
Somewhat simpler GPC modules are also supported. Note: This is not supported in the
Extended Pascal standard.
This is a simpler module support that does not require exports, imports, module headers etc.
These non-standard simple GPC modules look like (does not have an export part, does not
have a separate module-block, does not use import/export features.)

module DemoMod3;

type
FooType = Integer;

var
Foo: FooType;

procedure SetFoo (f: FooType);
begin

Foo := f
end;

function GetFoo: FooType;
begin

GetFoo := Foo;
end;

end.
program ModDemo3 (Output);

{ Manually do the "import" from DemoMod3 }

type
FooType = Integer;

procedure SetFoo (f: FooType); external;
function GetFoo: FooType; external;

begin
SetFoo (999);
WriteLn (GetFoo)
end.
Module initialization and finalization:
The to begin do module initialization and to end do module finalization constructs now
work on every target.

88 The GNU Pascal Manual

By the way: The “GPC specific” module definition is almost identical to the PXSC standard.
With an additional keyword ‘global’” which puts a declaration into an export interface with the
name of the module, it will be the same. @@This is planned.

7.1.8.2 The Source Structure of UCSD/Borland Pascal Units

A generic GNU Pascal unit looks like the following:
unit name;

interface

import part
interface part
implementation
implementation part
initialization part

end.

The name of the unit should coincide with the name of the file with the extension stripped.
(If not, you can tell GPC the file name with ‘uses foo in ’bar.pas’’, see [uses|, page 416.)

The import part is either empty or contains a ‘uses’ clause to import other units. It may
also consist of an ISO-style ‘import’ specification. Note that the implementation part is not
preceeded by a second import part in GPC (see [import|, page 322).

The interface part consists of constant, type, and variable declarations, procedure and func-
tion headings which may be freely mixed.

The implementation part is like the declaration part of a program, but the headers of pro-
cedures and functions may be abbreviated: Parameter lists and function return values may be
omitted for procedures and functions already declared in the interface part.

The initialization part may be missing, or it may be a ‘begin’ followed by one or more
statements, such that the unit has a statement part between this ‘begin’ and the final ‘end’.
Alternatively, a unit may have ISO-style module initializers and finalizers, see [to begin do],
page 408, [to end do], page 4009.

Note that GPC does not yet check whether all interface declarations are resolved in the
same unit. The implementation of procedures and functions which are in fact not used may
be omitted, and/or procedures and functions may be implemented somewhere else, even in a
different language. However, relying on a GPC bug (that will eventually be fixed) is not a good
idea, so this is not recommended. Instead, declare such routines as ‘external’.

A unit exports everything declared in the interface section. The exported interface has the
name of the unit and is compatible with Extended Pascal module interfaces since GPC uses the
same code to handle both.

7.2 Data Types

7.2.1 Type Definition

As described in Section 7.1.4 [Type Declaration], page 76, a type declaration part looks like
this:

Chapter 7: The Programmer’s Guide to GPC 89

type
type identifier

type definition;

type identifier = type definition;

where the left side is the type declaration and the right one the type definition side. GNU
Pascal offers variant possibilities to implement highly specialized and problem-specific data

types.

7.2.2 Ordinal Types

An ordinal type is a range of whole numbers. It includes integer types, character types and
subrange types of them.

A character type is represented by the intrinsic type ‘Char’ which can hold elements of
the operating system’s character set (usually ASCII). Conversion between character types and
ordinal types is possible with the intrinsic functions Ord and Chr or type casting techniques.

type
Foo: Char; { foo can hold a character }
Num: °0’ .. ’9’; { Can hold decimal ciphers, is a subrange type of Char }
See also

[Ord], page 357, [Chr], page 286, Section 7.7 [Type Casts|, page 109

7.2.3 Integer Types

Besides ‘Integer’, GNU Pascal supports a large zoo of integer types. Some of them you
will find in other compilers, too, but most are GNU extensions, introduced for particular needs.
Many of these types are synonyms for each other. In total, GPC provides 20 built-in integer
types, plus seven families you can play with. (Four of these “families” are signed and unsigned,
packed and unpacked subrange types; the others are explained below.)

See also: Section 7.2.10.1 [Subrange Types|, page 94.

7.2.3.1 The CPU’s Natural Integer Types

For most purposes, you will always use ‘Integer’, a signed integer type which has the “nat-

ural” size of such types for the machine. On most machines GPC runs on, this is a size of 32
bits, so ‘Integer’ usually has a range of ‘-2147483648..2147483647’ (see |[Integer|, page 327).

If you need an unsigned integer type, the “natural” choice is ‘Cardinal’, also called ‘Word’.
Like ‘Integer’, it has 32 bits on most machines and thus a range of ‘0..4294967295" (see
[Cardinal], page 282, [Word], page 422).

These natural integer types should be your first choice for best performance. For instance
on an [A32 CPU operations with ‘Integer’ usually work faster than operations with shorter
integer types like ‘ShortInt’ or ‘ByteInt’ (see below).

7.2.3.2 The Main Branch of Integer Types

‘Integer’, ‘Cardinal’, and ‘Word’ define the three “main branches” of GPC’s integer types.
You won'’t always be able to deal with the natural size; sometimes something smaller or longer
will be needed. Especially when interfacing with libraries written in other languages such as C,
you will need equivalents for their integer types.

The following variants of ‘Integer’, ‘Cardinal’ and ‘Word’ are guaranteed to be compatible
to the integer types of GNU C. The sizes given, however, are not guaranteed. They are just

90 The GNU Pascal Manual

typical values currently used on most platforms, but they may be actually shorter or increase
in the future.

signed unsigned also unsigned GNU C equivalent size in bits
(typically)
BytelInt ByteCard Byte [un]signed char 8
ShortInt ShortCard ShortWord [unsigned] short int 16
Integer Cardinal Word [unsigned] int 32
MedInt MedCard MedWord [unsinged] long int 32
LongInt LongCard LongWord [unsinged] long long int 64
— SizeType — size_t 32
PtrDiffType — — ptrdiff_t 32
PtrInt PtrCard PtrWord — 32

Since we don’t know whether ‘LongInt’ will always remain the “longest” integer type available
—maybe GNU C will get ‘long long long int’, one day, which we will support as ‘LongLongInt’
— we have added the synonym ‘LongestInt’ for the longest available singed integer type, and
the same holds for ‘LongestCard’ and ‘LongestWord’.

7.2.3.3 Integer Types with Specified Size

In some situations you will need an integer type of a well-defined size. For this purpose, GNU
Pascal provides three families of signed and unsinged integer types. The type

Integer (42)

is guaranteed to have a precision of 42 bits. In a realistic context, you will most often give a
power of two as the number of bits, and the machine you will need it on will support variables of
that size. If this is the case, the specified precision will simultaneously be the amount of storage
needed for variables of this type.

In short: If you want to be sure that you have a signed integer with 32 bits width, write
‘Integer (32)’, not just ‘Integer’ which might be bigger. The same works with ‘Cardinal’
and ‘Word’ if you need unsigned integer types of well-known size.

This way, you can’t get a higher precision than that of ‘LongestInt’ or ‘LongestCard’ (see
Section 7.2.3.2 [Main Branch Integer Types|, page 89). If you need higher precision, you can
look at the ‘GMP’ unit (see Section 7.14.5 [GMP], page 197) which provides integer types with
arbitrary precision, but their usage is different from normal integer types.

7.2.3.4 Integer Types and Compatibility

If you care about ISO compliance, only use ‘Integer’ and subranges of ‘Integer’.

Some of GPC’s non-ISO integer types exist in Borland Pascal, too: ‘Byte’, ‘ShortInt’, ‘Word’,
and ‘LongInt’. The sizes of these types, however, are not the same as in Borland Pascal. Even
for ‘Byte’ this is not guaranteed (while probable, though).

When designing GNU Pascal, we thought about compatibility to Borland Pascal. Since GNU
Pascal is (at least) a 32-bit compiler, ‘Integer’ must have (at least) 32 bits. But what to do with
‘Word’? Same size as ‘Integer’ (like in BP) or 16 bits (like in BP)? We decided to make ‘Word’
the “natural-sized” unsigned integer type, thus making it (at least) 32 bits wide. Similarly, we
decided to give ‘LongInt’ twice the size of ‘Integer’ (like in BP) rather than making it 32 bits
wide (like in BP). So ‘LongInt’ has 64 bits, and ‘ShortInt’ has 16 bits on the IA32 platform.

On the other hand, to increase compatibility to Borland Pascal and Delphi, GPC provides
the alias name ‘Comp’ for ‘LongInt’ (64 bits on IA32) and ‘SmallInt’ for ‘ShortInt’ (16 bits on
IA32). Note that BP treats ‘Comp’ as a “real” type and allows assignments like ‘MyCompVar :=
42.0’. Since we don’t consider this a feature, GPC does not copy this behaviour.

Chapter 7: The Programmer’s Guide to GPC 91

7.2.3.5 Summary of Integer Types

Here is a summary of all integer types defined in GPC. The sizes and ranges are only typical
values, valid on some, but not all platforms. Compatibility to GNU C however is guaranteed.

[Bytelnt]|, page 280
signed 8-bit integer type, ‘-128..128’,
compatible to ‘signed char’ in GNU C.

[ByteCard], page 280
unsigned 8-bit integer type, ‘0..255’,
compatible to ‘unsigned char’ in GNU C.

[ShortInt], page 393
signed 16-bit integer type, ‘-32768..32767’,
compatible to ‘short int’ in GNU C.

[ShortCard], page 393
unsigned 16-bit integer type, ‘0. .65535’,
compatible to ‘unsigned short int’ in GNU C.

[Integer|, page 327
signed 32-bit integer type, ‘-2147483648. . 2147483647,
compatible to ‘int’ in GNU C.

[Cardinal], page 282
unsigned 32-bit integer type, ‘0..4294967295’,
compatible to ‘unsigned int’ in GNU C.

[MedInt|, page 343
signed 32-bit integer type, ‘-2147483648. .2147483647’,
compatible to ‘long int’ in GNU C.

[MedCard], page 342
unsigned 32-bit integer type, ‘0..4294967295,
compatible to ‘unsigned long int’ in GNU C.
[LongInt], page 336
signed 64-bit integer type, ‘-9223372036854775808. .9223372036854775807’,
compatible to ‘long long int’ in GNU C.

[LongCard], page 333

unsigned 64-bit integer type, ‘0. .18446744073709551615,

compatible to ‘unsigned long long int’ in GNU C.
[LongestInt|, page 335

signed 64-bit integer type, ‘~9223372036854775808. .9223372036854775807".
[LongestCard], page 334

unsigned 64-bit integer type, ‘0. . 18446744073709551615’.
[Comp], page 288

signed 64-bit integer type, ‘=9223372036854775808. .9223372036854775807".
[Smalllnt], page 398

signed 16-bit integer type, ‘-32768..32767".
[SizeType], page 398

integer type (usually unsigned) to represent the size of objects in memory
[PtrDiff Type], page 371

signed integer type to represent the difference between two positions in memory

92 The GNU Pascal Manual

[PtrInt], page 371
signed integer type of the same size as a pointer

[PtrCard], page 370
unsigned integer type of the same size as a pointer

To specify the number of bits, use

‘Integer (1)’
signed n-bit integer type.

‘Cardinal (n)’
unsigned n-bit integer type.

‘Word (n)’ unsigned n-bit integer type.
program IntegerTypesDemo (Output);

var
ByteVar: Byte;
ShortIntVar: ShortInt;
Foo: MedCard;
Big: LongestInt;

begin
ShortIntVar := 1000;
Big := MaxInt * ShortIntVar;
ByteVar := 127;
Foo := 16#deadbeef
end.

See also: Section 7.2.10.1 [Subrange Types|, page 94.

7.2.4 Built-in Real (Floating Point) Types

GPC has three built-in floating point types to represent real numbers. FEach of them is
available under two names (for compatibility to other compilers and languages).

For most purposes, you will always use ‘Real’ which is the only one of them that is part
of Standard and Extended Pascal. If memory constraints apply, you might want to choose
‘ShortReal’ for larger arrays. On the other hand, if high precision is needed, you can use
‘LongReal’. When interfacing with libraries written in other languages such as C, you will need
the equivalents for their real types.

Note that not all machines support longer floating point types, so ‘LongReal’ is the same
as ‘Real’ on these machines. Also, some machines may support a longer type, but not do all
arithmetic operations (e.g. the ‘Sin’ function, [Sin|, page 396) in a precision higher than that of
‘Real’. If you need higher precision, you can look at the ‘GMP’ unit (see Section 7.14.5 [GMP],
page 197) which provides rational and real numbers with arbitrary precision, but their usage is
different from normal real types.

The following real types are guaranteed to be compatible to the real types of GNU C. The sizes
given, however, are not guaranteed. They are just typical values used on any IEEE compatible
floating point hardware, but they may be different on some machines.

type name alternative name GNU C equivalent size in bits (typically)
ShortReal Single float 32
Real Double double 64

LongReal Extended long double 80

Chapter 7: The Programmer’s Guide to GPC 93

7.2.5 Strings Types

There are several ways to use strings in GNU Pascal. One of them is the use of the intrinsic
string type ‘String’ which is a predefined schema type. The schema discriminant of this type
holds the maximal length, which is of type Integer, so values up to MaxInt can be specified.
For ‘String’, an assignment is defined. There are many built-in functions and procedures for
comfortable strings handling.

@@ 7777 String procedures and functions.

Another way to use strings is to use arrays of type ‘Char’. For these, an intrinsic assignment
is defined as well. Besides, ‘String’ and ‘Char’ are assignment compatible. The preferred way,
however, is ‘String’ because of the numerous possibilities for string handling.

7.2.6 Character Types

Character types are a special case of ordinal types. See Section 7.2.2 [Ordinal Types|, page 89

7.2.7 File Types

Files are used to store data permanently, normally on hard drives or floppies. There are tree
types of files available: text files, typed and untyped files.

Text files are used to store text in them, where typed files are used to store many entries of
the same type in them, e.g. addresses. Text files and typed files are accessible by ‘Read’ and
‘Write’ operations and do not need the parameter ‘BlockSize’ in ‘Reset’ or ‘Rewrite’. On the
other hand, untyped files are used to store any type of information in them but you need to use
‘BlockWrite’ or ‘BlockRead’ to store or retrieve data out of this file.

var
F1: Text; { a textfile }
F2: file of Real; { a typed filed used to store real values in it }
F3: File; { an untyped file }

See also

Section 7.10.1 [File Routines|, page 118, [Write], page 423, [Read], page 375, [BlockRead],
page 276, [BlockWrite|, page 277, [Reset], page 380, [Rewrite|, page 383

7.2.8 Boolean (Intrinsic)

The intrinsic Boolean represents boolean values, i.e. it can only assume true and false (which
are predefined constants). This type corresponds to the enumerated type

type
Boolean = (False, True);
Since it is declared this way, it follows:
Ord (False) =0
Ord (True) =1
False < True

There are four intrinsic logical operators. The logical and, or and not. In Borland Pascal
and GNU Pascal, there is a logical “exclusive or” xor.

See also

Section 7.2.10.2 [Enumerated Types]|, page 94, [and], page 262, [or], page 355, [not|, page 352,
[xor], page 425

94 The GNU Pascal Manual

7.2.9 Pointer (Intrinsic)

The intrinsic Pointer Type is a so-called unspecified or typeless pointer (i.e. a pointer which
does not point to any type but holds simply a memory address).

See also

Section 7.2.10.8 [Pointer Types]|, page 100, [nil], page 351

7.2.10 Type Definition Possibilities

7.2.10.1 Subrange Types

GNU Pascal supports Standard Pascal’s subrange types:

program SubrangeDemo;
type
MonthInt =1 .. 12;
Capital = ’A’ .. ’Z’;
ControlChar = "A .. "Z; { ‘"A’ = ‘Chr (1)’ is a BP extension }
begin
end.
Also possible: Subranges of enumerated types:

program EnumSubrangeDemo;
type
{ This is an enumerated type. }
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

{ This is a subrange of ‘Days’. }
Working = Mon .. Fri;

begin
end.

To increase performance, variables of such a type are aligned in a way which makes them
fastest to access by the CPU. As a result, ‘1 .. 12’ occupies 4 bytes of storage on an IA32 CPU.

For the case you want to save storage at the expense of speed, GPC provides a ‘packed’
variant of these as an extension:
program PackedSubrangeDemo;
type
MonthInt = packed 1 .. 12;
begin
end.

A variable of this type occupies the shortest possible (i.e., addressable) space in memory —
one byte on an IA32 compatible CPU.

See also: [packed|, page 360.
7.2.10.2 Enumerated Types

type
enum type identifier = (name identifier, ..., name identifier) ;

Chapter 7: The Programmer’s Guide to GPC 95

An enumerated type defines a range of elements which are referred to by identifiers. Enumer-
ated types are ordered by occurence in the identifier list. So, they can be used as index types in
an array definition, and it is possible to define subranges of them. Since they are ordered, they
can be compared to one another. The intrinsic function 0rd applied to name identifier returns
the number of occurence in the identifier list (beginning with zero), Pred and Succ return the
predecessor and successor of name identifier.

See also

Section 7.2.10.3 [Array Types|, page 95, Section 7.2.10.1 [Subrange Types]|, page 94, [Ord],
page 357, [Pred], page 367, [Succ|, page 404

7.2.10.3 Array Types

type
array type identifier

array [index type]l of element type
or

type
array type identifier = array [index type, ..., index type] of element type

The reserved word array defines an array type. index type has to be an ordinal type,
subrange type or an enumerated type, where several index types, separated by commata, are
allowed. element type is an arbitrary type. An element of an array is accessed by array type
variable [index number]. The upper and lower index bounds can be determined by the intrinsic
functions High and Low.

type
IntArray = array [1 .. 20] of Integer;
Foo = array [(Mo, Tu, We, Th, Fr, Sa, Su)] of Char;
Bar = array [0 .. 9, ’a’ .. ’z’, (Qux, Glorkl, Fred)] of Real;
Baz1 = array [1 .. 10] of IntArray;
{ equal (but declared differently): }
Baz2 = array [1 .. 10, 1 .. 20] of Integer;
See also

[High], page 319, [Low], page 338
7.2.10.4 Record Types

type
record type identifier = record
field identifier: type definition;

field identifier: type definition;
end;
or, with a variant part,
type
record type identifier = record
field identifier: type definition;

field identifier: type definition;
case bar: variant type of

96 The GNU Pascal Manual

selector: (field declarations) ;
selector: (field declarations) ;

end;
or, without a variant selector field,
type
record type identifier = record
field identifier: type definition;

field identifier: type definition;
case variant type of

selector: (field declarations) ;

selector: (field declarations) ;

end;
The reserved word record defines a structure of fields. Records can be ‘packed’ to save
memory usage at the expense of speed.

The reserved word ‘record’ and record types are defined in ISO-7185 Pascal. According to
ISO Pascal, the variant type must be an identifier. GNU Pascal, like UCSD and Borland Pascal,
also allows a subrange here.

A record field is accessed by record type variable . field identifier
See also: [packed], page 360, Section 7.1.7.4 [case Statement], page 81.

7.2.10.5 Variant Records

GPC supports variant records like in EP and BP. The following construction is not allowed
in Extended Pascal, but in BP and GPC:

program BPVariantRecordDemo;

type
PersonRec = record
Age: Integer;
case EyeColor: (Red, Green, Blue, Brown) of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);
end;

begin
end.
In EP, the variant field needs a type identifier, which, of course, also works in GPC:

program EPVariantRecordDemo;

type
EyeColorType = (Red, Green, Blue, Brown);

PersonRec = record
Age: Integer;

case EyeColor: EyeColorType of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);

Chapter 7: The Programmer’s Guide to GPC 97

end;

begin
end.

7.2.10.6 EP’s Schema Types including ‘String’

Schemata are types that depend on one or more variables, called discriminants. They are an
ISO-10206 Extended Pascal feature.

type
RealArray (n: Integer) = array [1 .. n] of Real;
Matrix (n, m: Positivelnteger) = array [1 .. n, 1 .. m] of Integer;

The type ‘RealArray’ in this example is called a Schema with the discriminant ‘n’.
To declare a variable of such a type, write:

var
Foo: RealArray (42);

The discriminants of every global or local schema variable are initialized at the beginning of
the procedure, function or program where the schema variable is declared.

Schema-typed variables “know” about their discriminants. Discriminants can be accessed
just like record fields:

program SchemalDemo;

type

PositiveInteger = 1 .. MaxInt;

RealArray (n: Integer) = array [1 .. n] of Real;

Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;
var

Foo: RealArray (42);

begin
Writeln (Foo.n) { yields 42 }
end.

Schemata may be passed as parameters. While types of schema variables must always have
specified discriminants (which may be other variables), formal parameters (by reference or by
value) may be of a schema type without specified discriminant. In this, the actual parameter
may posses any discriminant. The discriminants of the parameters get their values from the
actual parameters.

Also, pointers to schema variables may be declared without a discriminant:

program Schema2Demo;

type
RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = "RealArray;

var
Bar: RealArrayPtr;

begin

end.

When applying ‘New’ to such a pointer, you must specify the intended value of the discrimi-
nant as a parameter:

New (Bar, 137)
As a GNU Pascal extension, the above can also be written as

98 The GNU Pascal Manual

Bar := New (RealArrayPtr, 137)
The allocated variable behaves like any other schema variable:

program Schema3Demo;
type
RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = "RealArray;
var
Bar: RealArrayPtr;
i: Integer;

begin
Bar := New (RealArrayPtr, 137);
for i := 1 to Bar™.n do
Bar~[i] := 42
end.

Since the schema variable “knows” its size, pointers to schemata can be disposed just like
other pointers:

Dispose (Bar)

Schemata are not limited to arrays. They can be of any type that normally requires constant
values in its definition, for instance subrange types, or records containing arrays etc. (Sets do
not yet work.)

References to the schema discriminants are allowed, and the with statement is also allowed,
SO one can say:

program SchemaWithDemo;

type

RealArray (n: Integer) = array [1 .. n] of Real;
var

MyArray: RealArray (42);
begin

WriteLn (MyArray.n); { writes 42 }
with MyArray do
WriteLn (n); { writes 42 }
end.

Finally, here is a somewhat exotic example. Here, a ‘ColoredInteger’ behaves just like an
ordinary integer, but it has an additional property ‘Color’ which can be accessed like a record
field.

program SchemaExoticDemo;

type
ColorType = (Red, Green, Blue);
ColoredInteger (Color: ColorType) = Integer;

var
Foo: ColoredInteger (Green);

begin
Foo :=7;
if Foo.Color = Red then
Inc (Foo, 2)
else

Foo := Foo div 3

Chapter 7: The Programmer’s Guide to GPC 99

end.

An important schema is the predefined ‘String’ schema (according to Extended Pascal). It
has one predefined discriminant identifier Capacity. GPC implements the String schema as
follows:

type
String (Capacity: Cardinal) = record
Length: O .. Capacity;
Chars: packed array [1 .. Capacity + 1] of Char
end;

The Capacity field may be directly referenced by the user, the Length field is referenced by a
predefined string function Length (Str) and contains the current string length. Chars contains
the chars in the string. The Chars and Length fields cannot be directly referenced by a user
program.

If a formal value parameter is of type ‘String’ (with or without discriminant), the actual
parameter may be either a String schema, a fixed string (character array), a single character, a
string literal or a string expression. If the actual parameter is a ‘String’ schema, it is copied for
the parameter in the usual way. If it is not a schema, a ‘String’ schema is created automatically,
the actual parameter is copied to the new variable and the Capacity field of the new variable
is set to the length of the actual parameter.

Actual parameters to ‘var’ parameters of type ‘String’ must be ‘String’ schemata, not
string literals or character arrays.

program StringDemo (Output);

type
SType = String (10);
SPtr = "String;

var
Str : SType;

Str2: String (100000);

Str3: String (20) value ’string expression’;
DStr: “String;

Z3tr: SPtr;

Len : Integer value 256;

Ch : Char value ’R’;

{ ‘String’ accepts any length of strings }

procedure foo (z: String);

begin
Writeln (’Capacity: ’, z.Capacity);
Writeln (’Length : ’, Length (2));
WriteLn (’Contents: ’, z);

end;

{ Another way to use dynamic strings }
procedure Bar (SLen: Integer);
var
LString: String (SLen);
FooStr: type of LString;
begin
LString := ’Hello world!’;

100 The GNU Pascal Manual

Foo (LString);

FooStr := ’How are you?’;
Foo (FooStr);
end;
begin
Str := ’KUKKUU’;
Str2 := ’A longer string variable’;
New (DStr, 1000); { Select the string Capacity with ‘New’ }
DStr~ := ’The maximum length of this is 1000 chars’;
New (ZStr, Len);
ZStr~ := ’This should fit here’;
Foo (Str);
Foo (Str2);

Foo (’This is a constant string’);
Foo (°This is a ’ + Str3);
Foo (Ch); { A char parameter to string routine }
Foo (’’); { An empty string }
Foo (DStr~);
Foo (ZStr~);
Bar (10000);
end.

In the above example, the predefined procedure New was used to select the capacity of the
strings. Procedure Bar also has a string whose size depends of the parameter passed to it and
another string whose type will be the same as the type of the first string, using the type of
construct.

All string and character types are compatible as long as the destination string is long enough
to hold the source in assignments. If the source string is shorter than the destination, the
destination is automatically blank padded if the destination string is not of string schema type.

7.2.10.7 Set Types

set type identifier = set of set element type;

set type identifier is a set of elements from set element type which is either an ordinal type,
an enumerated type or a subrange type. Set element representatives are joined together into a
set by brackets:

[set element, ..., set element]

‘[1” indicates the empty set, which is compatible with all set types. Note: Borland Pascal
restricts the maximal set size (i.e. the range of the set element type) to 256, GNU Pascal has
no such restriction. The number of elements a set variable is holding can be determined by the
intrinsic set function Card (which is a GNU Pascal extension, in Extended Pascal and Borland
Pascal you can use SizeOf instead but note the element type size in bytes, then) to the set. There
are four intrinsic binary set operations: the union ‘+’; the intersection ‘*’ and the difference ‘-’.
The symmetric difference ‘><’ is an Extended Pascal extension.

See also

[Card], page 281, [SizeOf], page 397

7.2.10.8 Pointer Types

Chapter 7: The Programmer’s Guide to GPC 101

pointer type identifier = ~type identifier;

A pointer of the type pointer type identifier holds the address at which data of the type type
identifier is situated. Unlike other identifier declarations, where all identifiers in definition part
have to be declared before, in a pointer type declaration type identifier may be declared after
pointer type identifier. The data pointed to is accessed by ‘pointer type variable™’. To mark an
unassigned pointer, the ‘nil’ constant (which stands for “not in list”) has to be assigned to it,
which is compatible with all pointer types.

type
ItselfFoo = “ItselfFoo; { possible but senseless }
PInt = “Integer; { Pointer to an Integer }
PNode = "“TNode; { Linked 1list }
TNode = record
Key : Integer;
NextNode: PNode;
end;
var

Foo, Bar: PInt;

begin
Foo := Bar; { Modify address which foo is holding }
Foo™ :=5; { Access data foo is pointing to }

end.

GPC also suports pointers to procedures or function and calls through them. This is a
non-standard feature.

program ProcPtrDemo (Output);

type
ProcPtr = “procedure (Integer);

var
PVar: ProcPtr;

procedure WriteInt (i: Integer);
begin

Writeln (’Integer: ’, i : 1)
end;

begin
{ Let PVar point to function WriteInt }
PVar := @Writelnt;

{ Call the function by dereferencing the function pointer }
PVar~ (12345)
end.

See also: Section 7.2.9 [Pointer (Intrinsic)|, page 94.

102 The GNU Pascal Manual

7.2.10.9 Procedural and Functional Types

For procedures without a parameter list:
procedure type identifier = procedure name identifier;
or functions:
function type identifier =
function name identifier: function result type;
For procedures with a parameter list:
procedure type identifier =
procedure name identifier (parameter list) ;
or functions:
function type identifier =
function name identifier (parameter list) : function result type;

Procedural types can be used as procedures or functions respectively, but also a value can be
assigned to them. Procedural types are a Borland Pascal extension. In Borland Pascal, function
result type can only be one of these types: ordinal types, enumerated types, real types, pointer
types, the intrinsic Boolean, or the intrinsic String. In GNU Pascal every function result type
for procedural types is allowed.

BP has procedural and functional types:

type
CompareFunction = function (Keyl, Key2: String): Integer;

function Sort (Compare: CompareFunction);
begin

end;
Standard Pascal has procedural and functional parameters:

function Sort (function Compare (Keyl, Key2: String): Integer);
begin

end;

Both ways have pros and cons, e.g. in BP you can save, compare, trade, etc. procedural
values, or build arrays of them, while the SP way does not require a type declaration and
prevents problems with uninitialized or invalid pointers (which in BP will usually crash the
program).

GPC supports both ways. An important feature of Standard Pascal (but not BP) that GPC
also supports is the possibility to pass local routines as procedural or functional parameters,
even if the called routine is declared far remote. The called routine can then call the passed
local routine and it will have access to the original caller’s local variables.

program LocalProceduralParameterDemo;

procedure CallProcedure (procedure Proc);
begin

Proc
end;

procedure MainProcedure;
var LocalVariable: Integer;

Chapter 7: The Programmer’s Guide to GPC 103

procedure LocalProcedure;
begin

WriteLn (LocalVariable)
end;

begin
LocalVariable := 42;
CallProcedure (LocalProcedure)
end;

begin
MainProcedure
end.
See also: Section 7.1.6.1 [The Procedure|, page 78, Section 7.1.6.2 [The Function]|, page 79,
Section 7.1.6.4 [Subroutine Parameter List Declaration], page 79, Section 7.1.7.11 [Procedure
Call], page 84.

7.2.10.10 Object Types

Object types are used to encapsulate data and methods. Furthermore, they implement a
mechanism for inheritance.

See also
Section 7.8 [OOP], page 112

7.2.10.11 Initial values to type denoters

A type may be initialized to a value of expression when it is declared, like a variable, as in:

program TypeVarInitDemo;

type
Int10 = Integer value 10;
FooType = Real;

MyType = Char value Pred (’A’);
EType (a, b, c, d, e, £, g) value d;

const
Answer = 42;

var
ii : Int10; { Value of ii set to 10 }
ch : MyType value Pred (’z’);
aa : Integer value Answer + 10;
foo: FooType value Sqr (Answer);

el : EType; { value set to d }
e2 : EType value g; { value set to g }
begin
end.

Extended Pascal requires the type initializers to be constant expressions. GPC allows any
valid expression.

Note, however, that the expressions that affect the size of storage allocated for objects (e.g.
the length of arrays) may contain variables only inside functions or procedures.

104 The GNU Pascal Manual

GPC evaluates the initial values used for the type when an identifier is declared for that type.
If a variable is declared with a type-denoter that uses a type-name which already has an initial
value the latter initialization has precedence.

@@ GPC does not know how to calculate constant values for math functions in the run-
time library at compile time, e.g. ‘Exp (Sin (2.4567))’, so you should not use these kind of
expressions in object size expressions. (Extended Pascal allows this.)

7.2.10.12 Restricted Types

GPC supports ‘restricted’ types, defined in Extended Pascal. A value of a restricted type
may be passed as a value parameter to a formal parameter possessing its underlying type, or
returned as the result of a function. A variable of a restricted type may be passed as a variable
parameter to a formal parameter possessing the same type or its underlying type. No other
operations, such as accessing a component of a restricted type value or performing arithmetic,
are possible.

program RestrictedDemo;

type
UnrestrictedRecord = record
a: Integer;
end;
RestrictedRecord = restricted UnrestrictedRecord;

var
rl: UnrestrictedRecord;
r2: RestrictedRecord;
i: restricted Integer;
k: Integer;

function AccessRestricted (p: UnrestrictedRecord): RestrictedRecord;
var URes: UnrestrictedRecord;
begin
{ The parameter is treated as unrestricted, even though the actual
parameter may be a restricted object }
URes.a := p.a;
{ It is allowed to assign a return value }

AccessRestricted := URes;
end;
begin

rl.a := 354;

{ Assigning a restricted return value to a restricted object }
r2 := AccessRestricted (rl);

{ Passing a restricted object to unrestericted formal parameter is ok }
r2 := AccessRestricted (r2);

{$ifdef BUG}
{ **x The following statements are not allowed *** }
k := r2.a; { field access (reading) }

Chapter 7: The Programmer’s Guide to GPC 105

r2.a := 100; { field access (writing) }

rl := r2; { assignment source is restricted }

r2 :=ri; { assignment target is restricted }

rl := AccessRestricted (r2); { assigning a restricted return

value to an unrestricted object }

i := 16#ffff; { assignment target is restricted }
k =1+ 2; { arithmetic with restricted value }
{$endif}

end.

7.2.11 Machine-dependent Type Implementation

7.2.11.1 Endianness

Endianness means the order in which the bytes of a value larger than one byte are stored in
memory. This affects, e.g., integer values and pointers while, e.g., arrays of single-byte characters
are not affected. The GPC ‘String’ schema, however, contains ‘Capacity’ and ‘Length’ fields
before the character array. These fields are integer values larger than one byte, so the ‘String’
schema is affected by endianness.

Endianness depends on the hardware, especially the CPU. The most common forms are:
e Little-endian

Little-endian machines store the least significant byte on the lowest memory address (the
word is stored little-end-first).

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a little-endian
machine, the following bytes will occupy the memory positions:

Address Value

$1234 $ef

$1235 $be

$1236 $ad

$1237 $de

Examples for little-endian machines are IA32 and compatible microprocessors and Alpha
Processors.

e Big-endian

Big-endian machines store the most significant byte on the lowest memory address (the
word is stored big-end-first).

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a big-endian
machine, the following bytes will occupy the memory positions:

Address Value
$1234 $de
$1235 $ad
$1236 $be
$1237 $ef

Examples for big-endian machines are the Sparc and Motorola m68k CPU families and most
RISC processors. Big-endian byte order is also used in the Internet protocols.

Note: There are processors which can run in both little-endian and big-endian mode, e.g. the
MIPS processors. A single program, however, (unless it uses special machine code instructions)
will always run in one endianness.

Under normal circumstances, programs do not need to worry about endianness, the CPU
handles it by itself. Endianness becomes important when exchanging data between different

106 The GNU Pascal Manual

machines, e.g. via binary files or over a network. To avoid problems, one has to choose the
endianness to use for the data exchange. E.g., the Internet uses big-endian data, and most
known data formats have a specified endianness (usually that of the CPU on which the format
was originally created). If you define your own binary data format, you're free to choose the
endianness to use.

To deal with endianness, GPC predefines the symbol ‘__BYTES_LITTLE_ENDIAN__’ on little-
endian machines and ‘__BYTES_BIG_ENDIAN__’ on big-endian machines. Besides, the Run Time
System defines the constant ‘BytesBigEndian’ as False on little-endian machines and True on
big-endian machines.

There are also the symbols ‘__BITS_LITTLE_ENDIAN__’ ‘__BITS_BIG_ENDIAN__’

—_— —_—)

‘__WORDS_LITTLE_ENDIAN__’, ‘__WORDS_BIG_ENDIAN__’ and the constants ‘BitsBigEndian’

and ‘WordsBigEndian’ which concern the order of bits within a byte (e.g., in packed records)
or of words within multiword-numbers, but these are usually less important.

The Run Time System also contains a number of routines to convert endianness and to read
or write data from/to binary files in a given endianness, independent of the CPU’s endian-
ness. These routines are described in the RTS reference (see Section 7.13 [Run Time System],
page 128), under ‘endianness’. The demo program ‘endiandemo.pas’ contains an example on
how to use these routines.

7.2.11.2 Alignment

(Under construction.) @@ 7777

7.3 Operators

GNU Pascal supports all operators of ISO Pascal and Borland Pascal. In addition, you can
define your own operators according to the Pascal-SC (PXSC) syntax.

7.3.1 Built-in Operators

The following table lists all built-in GNU Pascal operators, ordered by precedence: ‘<’ etc.
have the lowest precedence, ‘not’ etc. the highest. As usual, the precedence of operators can be
superseded with parentheses.

In an assignment statement, ‘:=" has lower precedence than all operators. (This is rather

obvious from the syntax of assignment statements, and is merely noted for programmers familiar
with C where ‘=" is an operator.)

< = > in < >= <=
+ - or +< =< +> >
* / div mod and shl shr =xor *< /< *> />

pow k¥ ><
not & Q@

The Pascal-SC (PXSC) operators ‘+<’, ‘=<’ “4>7 ¢=>" <’ /<0 %>" and ‘/>’ are not yet
implemented into GNU Pascal but may be defined by the user (see below).

7.3.2 User-defined Operators

GNU Pascal allows the (re-)definition of binary operators according to the Pascal-SC (PXSC)
syntax. The following vector addition example illustrates how to do this:

program OperatorDemo;

type

Chapter 7: The Programmer’s Guide to GPC 107

Vector3 = record
X, ¥y, z: Real;
end;

var
a, b, c: Vector3 = (1, 2, 3);

operator + (u, v: Vector3) w: Vector3;

begin
W.X = u.Xx + V.X;
W.y = u.y + V.y;
W.Z = u.z + Vv.z;
end;
begin
c :=a+b
end.

Between the closing parenthesis of the argument list and the result variable (‘w’ in the above
example), GPC allows an optional equal sign. This is not allowed in PXSC, but it is consistent
with Extended Pascal’s function return variable definitions, where the equal sign is obligatory
(but also optional in GPC).

The argument types needn’t be equal, and the name of the operator may be an identifier
instead of a known symbol. You cannot define new symbols in GPC.

The PXSC operators ‘+>’) ‘“+<’; etc. for exact numerical calculations currently are not imple-
mented in GPC, but you can define them. Also, the other real-type operators do not meet the
requirements of PXSC; a module which fixes that would be a welcome contribution.

7.4 Procedure And Function Parameters

7.4.1 Parameters declared as ‘protected’ or ‘const’

All the following works in GPC:

procedure Foo (protected a, b, c: Integer); { 3 arguments }
procedure Foo (a, b, c, protected: Integer); { 4 arguments }
procedure Foo (a, b, protected, c: Integer); { 4 arguments }
procedure Foo (protected: Integer); { 1 argument }
procedure Foo (var protected: Integer); { 1 argument }
procedure Foo (protected protected: Integer); { 1 argument 1}

Furthermore, GPC supports const, according to BP, which i
or protected var, up to the compiler’s discretion.

n
D

quivalent to either protected

7.4.2 The Standard way to pass arrays of variable size

@@ (Under construction.)
A feature of Standard Pascal level 1.

7.4.3 BP’s alternative to Conformant Arrays

Borland Pascal “open array” formal parameters are implemented into GPC. Within the
function body, they have integer type index with lower bound 0.

108 The GNU Pascal Manual

In constrast to conformant arrays (which are not supported by BP), open arrays allow any
ordinal type as the index of the actual parameter (which is useful, e.g., if you want to be able
to pass values of any enumeration type). However, they lose information about the lower bound
(which is a problem, e.g., if you want to return information to the caller that relates to the
actual array index, like the function ‘I0Select’ in the Run Time System does).

7.5 Accessing parts of strings (and other arrays)

GPC allows the access of parts (“slices”) of strings as defined in Extended Pascal. For
example:

program StringSliceDemo;

const
HelloWorld = ’Hello, world!’;

begin
WriteLn (HelloWorld[8 .. 12]) { yields ‘world’ }
end.

As an extension, it also allows write access to a string slice:

program SliceWriteDemo;

var
s: String (42) = ’Hello, world!’;

begin

s[8 .. 12] := ’folks’;

Writeln (s) { yields ‘Hello, folks!’ }
end.

As a further extension, GPC allows slice access also to non-string arrays. However, the
usefulness of this feature is rather limited because of Pascal’s strict type checking rules: If
you have, e.g., an ‘array [1 .. 10] of Integer’ and take a slice ‘[1 .. 5]’ of it, it will not
be compatible to another ‘array [1 .. 5] of Integer’ because distinct array types are not
compatible in Pascal, even if they look the same.

However, array slice access can be used in connection with conformant or open array param-
eters. See the program ‘arrayslicedemo.pas’ (in the ‘demos’ directory) for an example.

7.6 Pointer Arithmetics

GPC allows to increment, decrement, compare, and subtract pointers or to use them in ‘for’
loops just like the C language.

GPC implements the address operator @ (a Borland Pascal extension).

program PointerArithmeticDemo;

var
a: array [1 .. 7] of Char;
p, q: “Char;

i: Integer;
{$X+} { We need extended syntax for pointer arithmetic }

begin

Chapter 7: The Programmer’s Guide to GPC 109

for p := @A[1] to QA[7] do
p 1= 0%

:= QA[7];
q := @A[3];
while p > q do
begin
pT =y
Dec (p)
end;

B
i

= QA[7];
@A[3];
qQ - p; { yields 4 }

b0 D
o

end.

Incrementing a pointer by one means to increment the address it contains by the size of the
variable it is pointing to. For typeless pointers (‘Pointer’), the address is incremented by one
instead.

Similar things hold when decrementing a pointer.

Subtracting two pointers yields the number of variables pointed to between both pointers,
i.e. the difference of the addresses divided by the size of the variables pointed to. The pointers
must be of the same type.

7.7 Type Casts

In some cases, especially when interfacing with other languages, Pascal’s strong typing can be
an obstacle. To temporarily circumvent this, GPC (and other Pascal compilers) defines explicit
“type casts”.

There are two kinds of type casts, value type casts and variable type casts.
Value type casts

To convert a value of one data type into another type, you can use the target type like the
name of a function that is called. The value to be converted can be a variable or an expression.

An example:
program TypeCastDemo;

var
Ch: Char;
i: Integer;

begin
i := Integer (Ch)
end.
Another, more complicated, example:

program TypeCst2Demo;

type
CharPtr = “Char;
CharArray = array [0 .. 99] of Char;
CharArrayPtr = “CharArray;

110 The GNU Pascal Manual

var
Fool, Foo2: CharPtr;
Bar: CharArrayPtr;

{$X+} { We need extended syntax in order to use ‘‘Succ’’ on a pointer }

begin

Fool := CharPtr (Bar);

Foo2 := CharPtr (Succ (Bar))
end.

However, because of risks involved with type casts, explained below, you should try to avoid
type casts whenever possible — and it should be possible in most cases. For instance, the first
example above could use the built-in function “Ord” instead of the type cast:

i := 0rd (Ch);
The assignments in the second example could be written in the following way without any
type casts:
Fool := @Bar~[0];
Foo2 := @Bar~[1];
Value type casting only works between certain types: either between different ordinal types
(including integer types), or between different real types, or between different pointer types.

In each case, the current value, i.e. the ordinal or numeric value or the address pointed to,
respectively, is preserved in the cast.

Note: It is also possible to cast from an integer into a real type. This is a consequence of the
fact that integer values are generally automatically converted to real values when needed.

Note: In the case of pointers, a warning is issued if the dereferenced target type requires a
bigger alignment than the dereferenced source type (see Section 7.2.11.2 [Alignment|, page 106).

Variable type casts

It is also possible to temporarily change the type of a variable, without converting its contents
in any way. This is called variable type casting.

The syntax is the same as for value type casting. This can be confusing, as the example
below shows.

The type-casted variable is still the same variable (memory location) as the original one, just
with a different type. Outside of the type cast, the variable keeps its original type.

There are some important differences between value and variable type casting:
e Variable type casting only works on variables, not on expressions.

e The result of a variable type casting is still a variable. Especially, it can be used on the left
side of an assignment (as a so-called “lvalue”), or passed by reference to a procedure.

e No values are converted. The contents of the variable, seen as a raw bit pattern, are just
interpreted according to the new type. In many cases, this does not make a big difference,
e.g. the same ordinal values of different ordinal types have the same bit pattern (provided,
the types have the same size), and similarly for different pointer types. However, there
are cases where it does make a difference, most notably the completely different internal
representation of integer and real types. This is demonstrated in the following example,
admittedly a very constructed example, by using an integer and a real type of the same size
and trying to cast between them.

e Because bit patterns are just interpreted differently, the source and target type must have
the same size. If this is not the case, GPC will give a warning. (@error? see below)

e Beware: Variable type casts might have unexpected effects on different platforms since you
cannot rely on a specific way the data is stored (e.g. see Section 7.2.11.1 [Endianness|,
page 105).

Chapter 7: The Programmer’s Guide to GPC 111

program TrapsOfTypeCastsDemo;

{ Declare a real type and an integer type of the same size, and some
variables of these types we will need. }

type
RealType = ShortReal;
IntegerType = Integer (BitSizeOf (RealType));

var
i, i1, i2, i3, i4, ib5: IntegerType;
r, rl, r2, r3, r4: RealType;

begin
{ First part: Casting integer into real types. }

{ Start with some integer value }
i := 42;

{ First attempt to cast. Here, an lvalue is casted, so this must
be a variable type cast. Therefore, the bit pattern of the value
of i is transferred unchanged into rl which results in a silly
value of ril. }

IntegerType (rl) := i;

{ Second try. Here we cast an expression -- though a trivial one --,
rather than a variable. So this can only be a value type cast.
Therefore, the numeric value is preserved, i.e. r2 = 42.0 . }

r2 := RealType (i + 0);

{ Third way. In this last example, a variable is casted, and the
result is used as an expression, not as an lvalue. So this
could be either a value or variable type cast. However, there
is a rule that value type casting is preferred if possible.

So r3 will contain the correct numeric value, too. }

r3 := RealType (i);

{ 0f course, you do not need any casts at all here. A simple
assignment will work because of the automatic conversion from
integer to real types. So r4 will also get the correct result. }

rd := i;

{ Now the more difficult part: Casting real into integer types. }

{ Start with some real value. }
r := 41.9;

{ Like the first attempt above, this one does a variable type cast,
preserving bit patterns, and leaving a silly value in il. }
{ RealType (il1) :=r; %}

112 The GNU Pascal Manual

{ The second try from above does not work, because an expression of
type real is to be casted into an integer which is not allowed. }
{ i2 := IntegerType (r + 0); }

{ Third way. This looks just like the third way in the first part
which was a value type cast.
But -- surprise! Since value type casting is not possible from
real into integer, this really does a variable type casting,
and the value of i3 is silly again! This difference in behaviour
shows some of the hidden traps in type casting. }

i3 := IntegerType (1);

{ As often, it is possible to avoid type casts altogether and
convert real types into integers easily by other means, i.e. by
using the built-in functions ‘¢ ‘Round’’ or ‘‘Trunc’’, depending
on the mode of rounding one wants. }

i4 := Round (r); { 42 }

i5 Trunc (r); { 41 }

end.
When dealing with objects (see Section 7.8 [OOP], page 112), it is often necessary — and safe
— to cast a pointer to an object into a pointer to a more specialized (derived) object. In future
releases, GPC will provide an operator ‘as’ for a safer approach to this problem.
See also: [absolute], page 258, Section 7.2.11.2 [Alignment]|, page 106, Section 7.2.11.1 [En-
dianness|, page 105, Section 7.8 [OOP], page 112, [Ord], page 357, [Chr]|, page 286, [Round],
page 385, [Trunc], page 410.

7.8 Object-Orientated Programming

GNU Pascal follows the object model of Borland Pascal 7.0. The BP object extensions are
almost fully implemented into GPC. This includes inheritance, virtual and non-virtual methods,
constructors, destructors, pointer compatibility, extended ‘New’ syntax (with constructor call
and/or as a Boolean function), extended ‘Dispose’ syntax (with destructor call).

The Borland object model is different from the ISO draft, but it will not be too difficult now
to implement that too (plus the Borland Delphi Object Extensions which are quite similar to
the ISO draft).

The syntax for an object type declaration is as follows:

program ObjectDemo;

type
Str100 = String (100);

FooParentPtr = “FooParent;
FooPtr = “Foo;

FooParent = object
constructor Init;
destructor Done; virtual;
procedure Bar (c: Real); virtual;
function Baz (b, a, z: Char): Str100; { not virtual }

Chapter 7: The Programmer’s Guide to GPC 113

end;

Foo = object (FooParent)
X, y: Integer;
constructor Init (a, b: Integer);
destructor Done; virtual;
procedure Bar (c: Real); virtual; { overrides ‘FooParent.Bar’ }
z: Real; { GPC extension: data fields after methods }
function Baz: Boolean; { new function }
end;

constructor FooParent.Init;
begin

WritelLn (’FooParent.Init’)
end;

destructor FooParent.Done;
begin

WriteLn (°I’’m also done.’)
end;

procedure FooParent.Bar (c: Real);
begin

Writeln (’FooParent.Bar (’, c, ’)7)
end;

function FooParent.Baz (b, a, z: Char) = s: Str100;
begin

WriteStr (s, ’FooParent.Baz (’, b, ’, ’, a, >, ’, z, ’)7)
end;

constructor Foo.Init (a, b: Integer);

begin
inherited Init;
X = a;
y := b;
z := 3.4;
FooParent.Bar (1.7)
end;

destructor Foo.Done;
begin
Writeln (°I’’m domne.’);
inherited Done
end;

procedure Foo.Bar (c: Real);
begin

Writeln (’Foo.Bar (’, c, ’)?)
end;

114 The GNU Pascal Manual

function Foo.Baz: Boolean;
begin

Baz := True
end;

var
Ptr: FooParentPtr;

begin
Ptr := New (FooPtr, Init (2, 3));
Ptr~.Bar (3);

Dispose (Ptr, Done);
New (Ptr, Init);
with Ptr~ do
Writeln (Baz (’b’, ’a’, ’z’))
end.
Remarks:
e Data fields and methods can be mixed.

e GPC currently does not support ‘private’ declarations and such. These directives are
syntactically accepted but ignored.

e Constructors and destructors are ordinary functions, internally. When a constructor is
called, GPC creates some inline code to initialize the object; destructors do nothing special.

e Currently, the compiler does not check whether all declared methods are really implemented.
Unimplemented methods will produce linking errors when they are called or if they are
virtual.

A pointer to ‘FooParent’ may be assigned the address of a ‘Foo’ object. A ‘FooParent’
formal ‘var’ parameter may get a ‘Foo’ object as the actual parameter. In such cases, a call to
a ‘virtual’ method calls the child’s method, whereas a call to a non-‘virtual’ method selects
the parent’s one:

var

MyFooParent: FooParentPtr;
SomeFoo: Foo;

[...]

SomeFoo.Init (4, 2);
MyFooParent := @SomeFoo;
MyFooParent”.bar (3.14); { calls ‘foo.bar’ }
MyFooParent~.baz (°b’, ’a’, ’z’); { calls ‘fooParent.baz’ }
if SomeFoo.baz then { calls ‘foo.baz’ }
Writeln (’Baz!’);
In a method, an overwritten method of a parent object can be called either prefixing it with
the parent type name, or using the keyword ‘inherited’:

procedure Foo.Bar (c: Real);

begin

Z := C;

inherited bar (z) { or: FooParent.Bar (z) }
end;

Use ‘FooParent.bar (z)’ if you want to be sure that this method is called, even if somebody
decides not to derive ‘foo’ directly from ‘fooParent’ but to have some intermediate object.

Chapter 7: The Programmer’s Guide to GPC 115

If you want to call the method ‘bar’ of the immediate parent — whether it be ‘fooParent’ or
whatever — use ‘inherited bar (z)’.

To allocate an object on the heap, use ‘New’ in one of the following manners:

var
MyFoo: FooPtr;

[...]
New (MyFoo, Init (4, 2));

MyFooParent := New (FooPtr, Init (4, 2))

The second possibility has the advantage that ‘MyFoo’ needn’t be a ‘FooPtr’ but can also be
a ‘FooParentPtr’, i.e. a pointer to an ancestor of ‘foo’.

Destructors can and should be called within Dispose:

Dispose (MyFooParent, Fini)

7.9 Compiler Directives And The Preprocessor

GPC, like UCSD Pascal and BP, treats comments beginning with a ‘¢’ immediately following
the opening ‘{’ or ‘(*¥” as a compiler directive. As in Borland Pascal, {$...} and (*$...*) are
equivalent. When a single character plus a ‘+’ or ‘=’ follows, this is also called a compiler switch.
All of these directives are case-insensitive (but some of them have case-sensitive arguments).
Directives are local and can be changed during one compilation (except include files etc. where
this makes no sense).

In general, compiler directives are compiler-dependent. (E.g., only the include directive {$I
FileName} is common to UCSD and BP.) Because of BP’s popularity, GPC supports all of BP’s
compiler directives (and ignores those that are unnecessary on its platforms — these are those
not listed below), but it knows a lot more directives.

Some BP directives are — of course not by chance — just an alternative notation for C prepro-
cessor directives. But there are differences: BP’s conditional definitions (‘{$define Foo}’) go
into another name space than the program’s definitions. Therefore you can define conditionals
and check them via {$ifdef Fool}, but the program will not see them as an identifier ‘Foo’, so
macros do not exist in Borland Pascal.

GPC does support macros, but disables this feature when the ‘~-no-macros’ option or the

dialect option ‘--borland-pascal’ or ‘--delphi’ is given, to mimic BP’s behaviour. Therefore,
the following program will react differently when compiled with GPC either without special
options or with, e.g., the ‘-~-borland-pascal’ option (and in the latter case, it behaves the
same as when compiled with BP).

program MacroDemo;
const Foo = ’Borland Pascal’;
{$define Foo ’Default’}

begin
Writeln (Foo)
end.

Of course, you should not rely on such constructs in your programs. To test if the program
is compiled with GPC, you can test the ‘__GPC__’ conditional, and to test the dialect used in

GPC, you can test conditionals like ‘'__BORLAND_PASCAL__’.

116

In general, almost every GPC specific command line option (see Section 6.1 [GPC Command
Line Options|, page 63) can be turned into a compiler directive (exceptions are those options
--unit-path’, because they refer to the installation on
a particular system, and therefore should be set system-wide, rather than in a source file):

that contain directory names, such as

--foo {$foo0}
--no-foo {$no-foo}
-Wbar {$W bar}

-Wno-bar {$W no-bar}

The following table lists some such examples as well as all those directives that do not
correspond to command-line options or have syntactical alternatives (for convenience and/or

BP compatibility).

--[no-Jshort-circuit

--[no-Jio-checking

--[no-]stack-checking

--[no-Jtyped-address

-W[no-Jwarnings

--[no-Jextended-syntax

--borland-pascal
--extended-pascal
--pascal-sc

etc.

{$M Hello!}

¢

The GNU Pascal Manual

{ note the space after the ‘W’ }

$B+

$I+

$s+

$T+

$w+

$X+

$B-

$1-

$s-

$w-

$x-

like in Borland Pascal:
$B- means short-circuit Boolean
operators; $B+ complete evaluation

like in Borland Pascal:
enable/disable I/0 checking

like in Borland Pascal:
enable/disable stack checking

like in Borland Pascal:

make the result of the address
operator and the Addr function a
typed or untyped pointer

enable/disable warnings. Note: in
‘~—-borland-pascal’ mode, the

short version is disabled because
$W+/$W- has a different meaning in
Borland Pascal (which can safely be
ignored in GPC), but the long version
is still available.

mostly like in Borland Pascal:

enable/disable extended syntax
(ignore function return values,
operator definitions, ‘PChar’,

pointer arithmetic, ...)

disable or warn about GPC features
not supported by the standard or
dialect given, do not warn about its
‘‘dangerous’’ features (especially BP).
The dialect can be changed during one
compilation via directives like,
e.g., ‘{$borland-pascall’.

write message ‘Hello!’ to
standard error during compilation. In
‘--borland-pascal’ mode, it is

Chapter 7: The Programmer’s Guide to GPC 117

{$define FOO}
or

{$CIDefine FOO}
—--cidefine=F00
{$CSDefine FOO}
-D FOO

or
—--csdefine=F00
or

—-define=F00
{$define loop while True do}

or
{$CIDefine loop ...}

—--cidefine="loop=..."
{$CSDefine loop ...}
-—-csdefine="loop=..."
or

--define="loop=..."

{$I FileName}

{$undef FOO}

{$ifdef FOO}

{($else}

($endif}

{$include "filename.pas"}

{$include <filename.pas>}

ignored it if only numbers follow
(for compatibility to Borland
Pascal’s memory directive)

like in Borland Pascal:
define FOO (for conditional compilation)
(case-insensitively)

the same on the command line
define FOO case-sensitively

the same on the command line

Note: ‘--define’ on the command
line is case-sensitive like in GCC,
but ‘{$define}’ in the source code
is case-insensitive like in BP

define ‘loop’ to be ‘while True do’
as a macro like in C. The name of the
macro is case-insensitive. Note:
Macros are disabled in
‘~-borland-pascal’ mode because BP
doesn’t support macros.

the same on the command line
define a case-sensitive macro

the same on the command line

like in Borland Pascal:
include ‘filename.pas’
(the name is converted to lower case)

like in Borland Pascal: undefine FOO

conditional compilation

(1ike in Borland Pascal).

Note: GPC predefines the symbol
¢__GPC__’> (with two leading

and trailing underscores).
include (case-sensitive)

the same, but don’t search in the
current directory

...and all the other C preprocessor directives.

118 The GNU Pascal Manual

You also can use the preprocessor directives in C style, e.g. ‘#include’, but this is deprecated
because of possible confusion with Borland Pascal style ‘#42’ character constants. Besides, in
the Pascal style, e.g. ‘{$include "foo.bar"}’, there may be more than one directive in the
same line.

7.10 Routines Built-in or in the Run Time System

In this section we describe the routines and other declarations that are built into the compiler
or part of the Run Time System, sorted by topics.

7.10.1 File Routines

Extended Pascal treats files quite differently from Borland Pascal. GPC supports both forms,
even in mixed ways, and provides many extensions.

@@ A lot missing here
e An example of getting the size of a file (though a ‘FileSize’ function is already built-in).

function FileSize (FileName : String) : LongInt;
var
f: bindable file [0 .. MaxInt] of Char;
b: BindingType;
begin
Unbind (f);
b := Binding (f);
b.Name := FileName;
Bind(f, b);
b := Binding(f);
SeekRead (f, 0);
if Empty (f) then
FileSize := 0
else
FileSize := LastPosition (f) + 1;
Unbind(f) ;
end;

Prospero’s Extended Pascal has a bug in this case. Replace the MaxInt in the type definition
of f by a sufficiently large integer. GNU Pascal works correct in this case.

e GPC implements lazy text file I/O, i.e. does a Put as soon as possible and a Get as late
as possible. This should avoid most of the problems sometimes considered to be the most
stupid feature of Pascal. When passing a file buffer as parameter the buffer is validated
when the parameter is passed.

e GPC supports direct access files. E.g., declaring a type for a file that contains 100 integers.
program DirectAccessFileDemo;

type

DFile = file [1 .. 100] of Integer;
var

F: DFile;

P, N: 1 .. 100;
begin

Rewrite (F);

P := 42;

N := 17;

SeekWrite (F, P);

Chapter 7: The Programmer’s Guide to GPC 119

Write (F, N)
end.

The following direct access routines may be applied to a direct access file:

SeekRead (F, N); { Open file in inspection mode, seek to record N }
SeekWrite (F, N); { Open file in generation mode, seek to record N }
SeekUpdate (F, N); { Open file in update mode, seek to record N }
Update (F); { Writes F~, position not changed. F~ kept. }

p :=Position (F); { Return current record number }

p := LastPosition (F); { Return the last record number in file }

If the file is open for inspection or update, Get may be applied. If the file is open for
generation or update, Put may be applied.

e In BP, you can associate file variables with files using the ‘Assign’ procedure which GPC

supports.
program AssignTextDemo;
var
t: Text;
Line: String (4096);
begin
Assign (t, ’mytext.txt’);
Reset (t);
while not EOF (t) do
begin
ReadLn (t, Line);
WriteLn (Line)
end
end.

e In Extended Pascal, files are considered entities external to your program. External entities,
which don’t need to be files, need to be bound to a variable your program. Any variable
to which external entities can be bound needs to be declared ‘bindable’. Extended Pascal
has the ‘Bind’ function that binds a variable to an external entity as well as ‘Unbind’ to
undo a binding and the function ‘Binding’ to return the current binding of a variable.
GPC supports these routines when applied to files. The compiler will reject binding of other
object types.

Only the fields ‘Bound’ and ‘Name’ of the predefined record type ‘BindingType’ are required
by Extended Pascal. Additionally, GPC implements some extensions. For the full definition
of ‘BindingType’, see [BindingType|, page 274.
The following is an example of binding:

program BindingDemo (Input, Output, f);

var
f: bindable Text;
b: BindingType;

procedure BindFile (var f: Text);
var

b: BindingType;
begin

Unbind (f);

b := Binding (f);

120 The GNU Pascal Manual

repeat
Write (’Enter a file name: ’);
ReadlLn (b.Name);
Bind (f, b);
b := Binding (f);
if not b.Bound then
Writeln (’File not bound -- try again.’)
until b.Bound
end;

begin

BindFile (f);

{ Now the file f is bound to an external file. We can use the
implementation defined fields of BindingType to check if the
file exists and is readable, writable or executable. }

b := Binding (£);

Write (’The file ’);

if b.Existing then
Writeln (’exists.’)

else
Writeln (’does not exist.’);

Write (PIt is ’);

if not b.Readable then Write (’not ’);

Write (’readable, ’);

if not b.Writable then Write (’not ’);

Write (Pwritable and ’);

if not b.Executable then Write (’not ’);

WriteLn (’executable.’)

end.

Note that Prospero’s Pascal defaults to creating the file if it does not exists! You need to use
Prospero’s local addition of setting b.Existing to True to work-around this. GPC does not
behave like this.

7.10.2 String Operations

In the following description, s1 and s2 may be arbitrary string expressions, s is a variable of
string type.
WriteStr (s, write-parameter-list)

ReadStr (s1, read-parameter-1list)
Write to a string and read from a string. The parameter lists are identical to
‘Write’/‘Read’ from Text files. The semantics is closely modeled after file I/O.

Index (s1, s2)

If s2 is empty, return 1 else if s1 is empty return 0 else returns the position of s2
in s1 (an integer).

Length (s1)
Return the length of s1 (an integer from 0 .. s1.Capacity).

Trim (s1) Returns a new string with spaces stripped of the end of s.

SubStr (s1, i)

Chapter 7: The Programmer’s Guide to GPC 121

SubStr (si1, i, j)
Return a new substring of s1 that contains j characters starting from i. If j is
missing, return all the characters starting from 1.

EQ (s1, s2)
NE (s1, s2)
LT (s1, s2)
LE (s1, s2)
GT (s1, s2)
GE (s1, s2)

Lexicographic comparisons of s1 and s2. Returns a boolean result. Strings are not
padded with spaces.

sl =s2
sl <> s2
sl <s2
sl <= 82
sl > s2

sl >=s2 Lexicographic comparisons of s1 and s2. Returns a boolean result. The shorter
string is blank padded to length of the longer one, but only in ‘--extended-pascal’
mode.

GPC supports string catenation with the + operator or the ‘Concat’ function. All string-
types are compatible, so you may catenate any chars, fixed length strings and variable length
strings.

program ConcatDemo (Input, Output);

var
Ch : Char;
Str : String (100);
Str2: String (50);
FStr: packed array [1 .. 20] of Char;

begin
Ch := ’$’;
FStr := ’demo’; { padded with blanks }
Write (’Give me some chars to play with: ’);
ReadlLn (Str);

Str := ’"’ + ’prefix:’ + Str + ’:suffix:’ + FStr + Ch;
Writeln (Concat (’Le’, ’ng’, ’th’), ’> = ’, Length (Str));
WriteLn (Str)

end.

Note: The length of strings in GPC is limited only by the range of ‘Integer’ (at least 32
bits, i.e., 2 GB), or the available memory, whichever is smaller. :—)

When trying to write programs portable to other EP compilers, it is however save to assume
a limit of about 32 KB. At least Prospero’s Extended Pascal compiler limits strings to 32760
bytes. DEC Pascal limits strings to 65535 bytes.

122 The GNU Pascal Manual

7.10.3 Accessing Command Line Arguments

GPC supports access to the command line arguments with the BP compatible ParamStr and
ParamCount functions.

e ParamStr[0] is the program name,

e ParamStr[1] .. ParamStr [ParamCount] are the arguments

The program below accesses the command line arguments.
program CommandLineArgumentsDemo (Output);

var
Counter: Integer;

begin
WriteLn (’This program displays command line arguments one per line.’);
for Counter := 0 to ParamCount do
WritelLn (’Command line argument #’, Counter, ’ is ¢’,
ParamStr (Counter), ’’’?)
end.

7.10.4 Memory Management Routines

Besides the standard ‘New’ and ‘Dispose’ routines, GPC also allows BP style dynamic mem-
ory management with GetMem and FreeMem:

GetMem (MyPtr, 1024);
FreeMem (MyPtr, 1024);

GPC also supports function style call to GetMemn:
MyPtr := GetMem (1024);
(see also: New in context of Object Orientated Programming)

One somehow strange feature of Borland is not supported: You cannot free parts of a variable
with FreeMem, while the rest is still used and can be freed later by another FreeMem call:

program PartialFreeMemDemo;

type
Vector = array [0 .. 1023] of Integer;
VecPtr = “Vector;

var
p, q: VecPtr;

begin

GetMem (p, 1024 * SizeOf (Integer));
q := VecPtr (@p~[512]);

{ ...}
FreeMem (p, 512 * SizeOf (Integer));
{ ...}

FreeMem (q, 512 * Size0f (Integer));
end.

Chapter 7: The Programmer’s Guide to GPC 123

7.10.5 Operations for Integer and Ordinal Types

e Bit manipulations: The BP style bit shift operators shl and shr exist in GPC as well as
bitwise and, or, xor and not for integer values.

2#100101 and (1 shl 5) = 2#100000
GPC also supports and, or, xor and not as procedures:

program BitOperatorProcedureDemo;
var x: Integer;

begin
X :=7T;
and (x, 14); { sets x to 6 }
xor (x, 3); { sets x to 5 }
end.
e Succ, Pred: The standard functions ‘Succ’ and ‘Pred’ exist in GPC and accept a second
parameter.

e Increment, decrement: The BP built-in Procedures Inc and Dec exist in GPC.

program IncDecDemo;
var
i: Integer;
c: Char;
begin
Inc (i);
Dec (i, 7);
Inc (c, 3);
end.

=1+ 1; }
i-7;1%
Succ (c, 3); }

A
0 -
]

e Min, Max: These are a GNU extension and work for reals as well as for ordinal types. Mixing
reals and integers is okay, the result is real then.

7.10.6 Complex Number Operations

@@ A lot of details missing here
binary operators +, -, *, / and unary -, +
exponentiation operators (pow and *x)
functions (Sqr, ArcTan, SqRt, Exp, Ln, Sin, Cos)

number info with Re, Im and Arg functions

numbers constructed by Cmplx or Polar

The following sample programs illustrates most of the Complex type operations.

program ComplexOperationsDemo (Output) ;

var
z1, z2: Complex;
Len, Angle: Real;

begin
z1 := Cmplx (2, 1);
Writeln;
Writeln (’Complex number zl is: (°, Re (z1) : 1, ’,’, Im (z1) : 1, ’)’);
Writeln;
z2 := Conjugate(zl); { GPC extension }

124 The GNU Pascal Manual

WriteLn (’Conjugate of zl is: (°, Re (22) : 1, ?,’, Im (22) : 1, ’)?);

Writeln;

Len := Abs (z1);

Angle := Arg (z1);

Writeln (’The polar representation of zl is: Length=’, Len : 1,
>, Angle=’, Angle : 1);

WritelLn;

z2 := Polar (Len, Angle);
WriteLn (’Converting (Length, Angle) back to (x, y) gives: (’,
Re (z2) : 1, >,’, Im (z2) : 1, ’)’);

Writeln;

Writeln (’The following operations operate on the complex number z1’);
WriteLn;

z2 := ArcTan (z1);

Writeln (’ArcTan (z1) = (’, Re (z2), ’, ’, Im (z2), ’)’);

WritelLn;

z2 := z1 *x*x 3.141;

Writeln (’z1 #*x 3.141 =’, Re (z2), ’, ’, Im (z2), ’)’);

WritelLn;

z2 := Sin (z1);

WriteLn (°Sin (z1) = (’, Re (z2), ’, 7, Im (z2), ’)’);

Writeln (’(Cos, Ln, Exp, SqRt and Sqr exist also.)’);

Writeln;

z2 := zl1 pow 8;

Writeln (°z1 pow 8 = (°, Re (22), ’, ’, Im (22), ’)’);

Writeln;

z2 := z1 pow (-8);

Writeln (°z1 pow (-8) = (’, Re (22), ’, ’, Im (22), ’)’);
end.

7.10.7 Set Operations

@@ A lot missing here

GPC supports Standard Pascal set operations. In addition it supports the Extended Pas-
cal set operation symmetric difference (setl >< set2) operation whose result consists of those
elements which are in exactly one of the operannds.

It also has a function that counts the elements in the set: ‘a := Card (setl)’

7.10.8 Date And Time Routines

procedure GetTimeStamp (var t: TimeStamp) ;

function Date (t: TimeStamp): packed array [1 .. DateLength] of Char;

function Time (t: TimeStamp): packed array [1 .. TimeLength] of Char;
DateLength and TimeLength are implementation dependent constants.

GetTimeStamp (t) fills the record ‘t’” with values. If they are valid, the Boolean flags are set
to True.

TimeStamp is a predefined type in the Extended Pascal standard. It may be extended in
an implementation, and is indeed extended in GPC. For the full definition of ‘TimeStamp’, see
[TimeStamp|, page 407.

Chapter 7: The Programmer’s Guide to GPC 125

7.11 Interfacing with Other Languages

The standardized GNU compiler back-end makes it relatively easy to share libraries between
GNU Pascal and other GNU compilers. On Unix-like platforms (not on Dos-like platforms), the
GNU compiler back-end usually complies to the standards defined for that system, so commu-
nication with other compilers should be easy, too.

In this chapter we discuss how to import libraries written in other languages, and how to
import libraries written in GNU Pascal from other languages. While the examples will specialize
to compatibility to GNU C, generalization is straightforward if you are familiar with the other
language in question.

7.11.1 Importing Libraries from Other Languages

To use a function written in another language, you need to provide an external declaration
for it — either in the program, or in the interface part of a unit, or an interface module.

Let’s say you want to use the following C library from Pascal:

File ‘callc.c’:

#include <unistd.h>
#include "callc.h"

int foo = 1;

void bar (void)
{

sleep (foo);
}

File ‘callc.h’:

/* Actually, we wouldn’t need this header file, and could instead
put these prototypes into callc.c, unless we want to use callc.c
also from other C source files. */

extern int foo;
extern void bar (void);

Then your program can look like this:

program CallCDemo;
{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

var
Foo: Integer; asmname ’foo’; external;

procedure Bar; asmname ’bar’;

begin
Foo := 42;
Bar

end.

Or, if you want to provide a ‘CallCUnit’ unit:

126 The GNU Pascal Manual

unit CallCUnit;
interface

var
Foo: Integer; asmname ’foo’; external;

procedure Bar; asmname ’bar’;
implementation
{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

end.

program CallCUDemo;
uses CallCUnit;

begin
foo := 42;
Bar

end.

You can either link your program manually with ‘callc.o’ or put a compiler directive ‘{$L
callc.o} into your program or unit, and then GPC takes care of correct linking. If you have
the source of the C library (you always have it if it is Free Software), you can even write ‘{$L
callc.c}’ in the program (like above). Then GPC will also link with ‘callc.o’, but in addition
GPC will run the C compiler whenever ‘callc.c’ has changed if ‘-—automake’ is given, too.

While it is convenient for most applications, there is no must to give the C function ‘bar’
the name ‘Bar’ in Pascal; you can name it as you like.

For external functions completely written in lowercase there is the shortcut ‘C’ or
‘c_language’ for ‘asmname ’bar’’. For external functions written with one uppercase letter
and the others in lowercase, you can use ‘external’ or ‘extern’ instead of ‘asmname ’Bar’’.
Since GPC internally converts all identifiers to this notation, ‘external’ is the natural choice
when importing other Pascal functions.

Caution: This syntax (‘C’, ‘asmname’ and such) is subject to change.

It is important that data types of both languages are mapped correctly onto each other. C’s
‘int’, for instance, translates to GPC’s ‘Integer’, and C’s ‘unsigned long’ to ‘MedCard’. For
a complete list of integer types with their C counterparts, see Section 7.2.3 [Integer Types],
page 89.

In some cases it can be reasonable to translate a C pointer parameter to a Pascal ‘var’
parameter. Since const parameters in GPC can be passed by value or by reference internally,
possibly depending on the system, ‘const foo *’ parameters to C functions cannot reliably
declared as ‘const’ in Pascal. However, Extended Pascal’s ‘protected var’ can be used since
this guarantees passing by reference.

Some libraries provide a ‘main’ function and require your program’s “main” to be named
differently. To achive this with GPC, invoke it with an option ‘--gpc-main="GPCmain"’ (where
‘GPCmain’ is an example how you might want to name the program). You can also write it into
your source as a directive ‘{$gpc-main="GPCmain"}’.

Chapter 7: The Programmer’s Guide to GPC 127

7.11.2 Exporting GPC Libraries to Other Languages

The ‘.0’ files produced by GPC are in the same format as those of all other GNU compilers,

so there is no problem in writing libraries for other languages in Pascal. To use them, you will
need to write kind of interface — a header file in C. However there are some things to take into
account, especially if your Pascal unit exports objects:

By default, GPC capitalizes the first letter (only) of each identifier, so ‘procedure FooBAR’
must be imported as ‘extern void Foobar ()’ from C.

If you want to specify the external name explicitly, use ‘asmname’:

procedure FooBAR; asmname ’FooBAR’;
{ Works like a ‘forward’ declaration }

procedure FooBAR;
begin
Writeln (’FooBAR’)
end;
This one can be imported from C with ‘extern void FooBar()’.

Objects are “records” internally. They have an implicit ‘vmt’ field which contains a pointer
to the “virtual method table”. This table is another record of the following structure:

type

VMT = record
ObjectSize: Ptrint; { Size of object in bytes }
NegObjectSize: PtrInt; { Negated size }
Methods: array [1 .. n] of procedure;

{ Pointers to the virtual methods. The entries are of the
repective procedure or function types. }
end;

You can call a virtual method of an object from C if you explicitly declare this ‘struct’
and explicitly dereference the ‘Fun’ array. The VMT of an object ‘FooBAR’ is an external
(in C sense) variable ‘vmt_Foobar’ internally.

Methods of objects are named ‘Myobject_Mymethod’ (with exactly two capital letters) in-
ternally.

If you want to put a program in a library for some reason, and you want to give the ‘main’
program an internal name different from ‘main’, call GPC with the command-line option
‘~-gpc-main="GPCmain"’ (see the previous subsection).

7.12 Notes for Debugging

The GNU debugger, ‘gdb’, does not yet understand Pascal sets, files or subranges. Now
‘gdb’ allows you to debug these things, even though it does not yet understand some stabs.

Forward referencing pointers generate debug info that appears as generic pointers.
No information of ‘with’ statements is currently given to the debugger.

When debugging, please note that the Initial Letter In Each Identifier Is In Upper Case
And The Rest Are In Lower Case, unless explicitly overriden with ‘asmname’ (see [asmname],
page 269) or a similar directive. This is to reduce name clashes with ‘libc.a’ and other
possible libraries.

All visible GPC Run Time System routines have linker names starting with ‘_p_’.

The linker name of the main program is ‘pascal_main_program’. This is done because ISO
Standard wants to have the program name in a separate name space.

128 The GNU Pascal Manual

7.13 Pascal declarations for GPC’s Run Time System

Below is a Pascal source of the declarations in GPC’s Run Time System (RTS). A file
‘gpc.pas’ with the same contents is included in the GPC distribution in a ‘units’ subdirectory
of the directory containing ‘libgcc.a’. (To find out the correct directory for your installation,
type ‘gpc ——print-file-name=units’ on the command line.)

{ This file was generated automatically from gpc-pas.in.
DO NOT CHANGE THIS FILE MANUALLY! }

{ Pascal declarations of the GPC Run Time System that are visible to
each program.

This unit contains Pascal declarations of many RTS routines which
are not built into the compiler and can be called from programs.
Don’t copy the declarations from this unit into your programs, but
rather include this unit with a ‘uses’ statement. The reason is
that the internal declarations, e.g. the ‘asmnames’, may change,
and this unit will be changed accordingly. ©@In the future, this
unit might be included into every program automatically, so there
will be no need for a ‘uses’ statement to make the declarations
here available.

Note about ‘protected var’ parameters:

Since const parameters in GPC may be passed by value *or* by
reference internally, possibly depending on the system, ‘const
foox’ parameters to C functions *cannot* reliably declared as
‘const’ in Pascal. However, Extended Pascal’s ‘protected var’ can
be used since this guarantees passing by reference.

Copyright (C) 1998-2002 Free Software Foundation, Inc.
Author: Frank Heckenbach <frank@pascal.gnu.de>
This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause

Chapter 7: The Programmer’s Guide to GPC 129

the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ <> 20020510}

{$error

Trying to compile gpc.pas with a non-matching GPC version is likely
to cause problems.

In case you are building the RTS separately from GPC, make sure you
install a current GPC version previously. If you are building GPC
now and this message appears, something is wrong -- if you are
overriding the GCC_FOR_TARGET or GPC_FOR_TARGET make variables, this
might be the problem. If you are cross-building GPC, build and
install a current GPC cross-compiler first, sorry. If that’s not the
case, please report it as a bug.

If you are not building GPC or the RTS currently, you might have
installed things in the wrong place, so the compiler and RTS
versions do not match.}

{$endif}

module GPC interface;

export

GPC = all;

GPC_SP = (eread { @@ not really, but an empty export doesn’t work

})

GPC_EP

})

GPC_BP (MaxLongInt, ExitCode, ErrorAddr, Pos);

GPC_Delphi = (MaxLongInt, Int64, InitProc, EConvertError,
ExitCode, ErrorAddr, Pos, SetString, StringOfChar,
TextFile, AssignFile, CloseFile);

(eread { @@ not really, but an empty export doesn’t work

{ Pascal declarations of the GPC Run Time System routines that are
implemented in C, from rtsc.pas }

const
MaxLongInt = High (LongInt);

{ Maximum size of a variable }
MaxVarSize = MaxInt div 8;

{ If set, characters >= #$80 are assumed to be letters even if the
locale routines don’t say so. This is a kludge because some
systems don’t have correct non-English locale tables. }

var
FakeHighletters: Boolean; asmname ’_p_FakeHighLetters’; external;

130 The GNU Pascal Manual

type
PCStrings = "TCStrings;
TCStrings = array [0 .. MaxVarSize div SizeOf (CString)] of
CString;

Int64 = Integer (64);

UnixTimeType = LongInt; { This is hard-coded in the compiler. Do
not change here. }

MicroSecondTimeType = LonglInt;

FileSizeType = LongInt;

SignedSizeType = Integer (BitSize0f (SizeType));

TSignalHandler = procedure (Signal: Integer);

StatFSBuffer = record
BlockSize, BlocksTotal, BlocksFree: LongestInt;
FilesTotal, FilesFree: Integer

end;

InternalSelectType = record
Handle: Integer;
Read, Write, Exception: Boolean
end;

{ ‘+ 1’ is a waste, but it is so the size of the array is not
zero for Count = 0 }

PPStrings = “TPStrings;

TPStrings (Count: Cardinal) = array [1 .. Count + 1] of ~“String;

GlobBuffer = record
Result: PPStrings;
Internall: Pointer;
Internal2: PCStrings;
Internal3: Integer

end;

{ Mathematical routines }

function SinH (x: Real): Real; attribute (const);
asmname ’_p_SinH’;

function CosH (x: Real): Real; attribute (const);
asmname ’_p_CosH’;

function ArcTan2 (y: Real; x: Real): Real; attribute (const);
asmname ’_p_ArcTan2’;

function IsInfinity (x: LongReal): Boolean; attribute (const);
asmname ’_p_IsInfinity’;

function IsNotANumber (x: LongReal): Boolean; attribute (const);
asmname ’_p_IsNotANumber’;

procedure SplitReal (x: LongReal; var Exponent: Integer; var
Mantissa: LongReal); asmname ’_p_SplitReal’;

Chapter 7: The Programmer’s Guide to GPC 131

{ Character routines }

{ Convert a character to upper case, according to the current
locale.
Except in ‘--borland-pascal’ mode, ‘UpCase’ does the same. }
function LocaleUpCase (ch: Char): Char; attribute (const);
asmname ’_p_LocaleUpCase’;

4

{ Convert a character to lower case, according to the current
locale.
Except in ‘--borland-pascal’ mode, ‘UpCase’ does the same. }

function LocalelLoCase (ch: Char): Char; attribute (const);
asmname ’_p_LocalelLoCase’;

function IsUpCase (ch: Char): Boolean; attribute (const);
asmname ’_p_IsUpCase’;

function IsLoCase (ch: Char): Boolean; attribute (const);
asmname ’_p_IsLoCase’;

function IsAlpha (ch: Char): Boolean; attribute (const);
asmname ’_p_IsAlpha’;

function IsAlphaNum (ch: Char): Boolean; attribute (const);
asmname ’_p_IsAlphaNum’;

function IsAlphaNumUnderscore (ch: Char): Boolean; attribute
(const); asmname ’_p_IsAlphaNumUnderscore’;

function IsSpace (ch: Char): Boolean; attribute (const);
asmname ’_p_IsSpace’;

function IsPrintable (ch: Char): Boolean; attribute (const);
asmname ’_p_IsPrintable’;

[4

{ Time routines }

{ Sleep for a given number of seconds. }
procedure Sleep (Seconds: Integer); asmname ’_p_Sleep’;

{ Sleep for a given number of microseconds. }
procedure SleepMicroSeconds (MicroSeconds: Integer);
asmname ’_p_SleepMicroSeconds’;

{ Set an alarm timer. }
function Alarm (Seconds: Integer): Integer; asmname ’_p_Alarm’;

{ Convert a Unix time value to broken-down local time.
A1l parameters except Time may be Null. }

procedure UnixTimeToTime (Time: UnixTimeType; var Year: Integer; var
Month: Integer; var Day: Integer; var Hour: Integer; var Minute:
Integer; var Second: Integer;

var TimeZone: Integer; var DST:

Boolean; var TZNamel: CString; var TZName2: CString);
asmname ’_p_UnixTimeToTime’;

{ Convert broken-down local time to a Unix time value. }
function TimeToUnixTime (Year: Integer; Month: Integer; Day:

132 The GNU Pascal Manual

Integer; Hour: Integer; Minute: Integer; Second: Integer):
UnixTimeType; asmname ’_p_TimeToUnixTime’;

{ Get the real time. MicroSecond can be Null and is ignored then. 7}
function GetUnixTime (var MicroSecond: Integer): UnixTimeType;
asmname ’_p_GetUnixTime’;

{ Get the CPU time used. MicroSecond can be Null and is ignored
then. Now, GetCPUTime can measure long CPU times reliably on most
systems (e.g. Solaris where it didn’t work before). }

function GetCPUTime (var MicroSecond: Integer): Integer;
asmname ’_p_GetCPUTime’;

{ Signal and process routines }

{ Extract information from the status returned by PWait }

function StatusExited (Status: Integer): Boolean; attribute
(const); asmname ’_p_StatusExited’;

function StatusExitCode (Status: Integer): Integer; attribute
(const); asmname ’_p_StatusExitCode’;

function StatusSignaled (Status: Integer): Boolean; attribute
(const); asmname ’_p_StatusSignaled’;

function StatusTermSignal (Status: Integer): Integer; attribute
(const); asmname ’_p_StatusTermSignal’;

function StatusStopped (Status: Integer): Boolean; attribute
(const); asmname ’_p_StatusStopped’;

function StatusStopSignal (Status: Integer): Integer; attribute
(const); asmname ’_p_StatusStopSignal’;

{ Install a signal handler and optionally return the previous
handler. OldHandler and OldRestart may be Null. }

function InstallSignalHandler (Signal: Integer; Handler:
TSignalHandler; Restart: Boolean; UnlessIgnored: Boolean;
var 0ldHandler: TSignalHandler; var OldRestart: Boolean): Boolean;
asmname ’_p_InstallSignalHandler’;

{ Block or unblock a signal. }
procedure BlockSignal (Signal: Integer; Block: Boolean);
asmname ’_p_BlockSignal’;

{ Test whether a signal is blocked. }
function SignalBlocked (Signal: Integer): Boolean;
asmname ’_p_SignalBlocked’;

{ Sends a signal to a process. Returns True if successful. If Signal
is 0, it doesn’t send a signal, but still checks whether it would
be possible to send a signal to the given process. }

function Kill (PID: Integer; Signal: Integer): Boolean;
asmname ’_p_Kill’;

{ Constant for WaitPID }

Chapter 7: The Programmer’s Guide to GPC 133

const
AnyChild = -1;

{ Waits for a child process with the given PID (or any child process
if PID = AnyChild) to terminate or be stopped. Returns the PID of
the process. WStatus will contain the status and can be evaluated
with StatusExited etc.. If nothing happened, and Block is False,
the function will return O, and WStatus will be 0. If an error
occurred (especially on single tasking systems where WaitPID is
not possible), the function will return a negative value, and
WStatus will be 0. }

function WaitPID (PID: Integer; var WStatus: Integer; Block:
Boolean): Integer; asmname ’_p_WaitPID’;

{ Returns the process ID. }
function ProcessID: Integer; asmname ’_p_ProcessID’;

{ Returns the real or effective user ID of the process. }
function UserID (Effective: Boolean): Integer; asmname ’_p_UserID’;

{ Returns the real or effective group ID of the process. }
function GroupID (Effective: Boolean): Integer;
asmname ’_p_GroupID’;

{ Low-level file routines. Mostly for internal use. }

{ Get information about a file system. }
function StatFS (Path: CString; var Buf: StatFSBuffer): Boolean;
asmname ’_p_StatFS’;
function CStringOpenDir (Name: CString): Pointer;
asmname ’_p_CStringOpenDir’;
function CStringReadDir (Dir: Pointer): CString;
asmname ’_p_CStringReadDir’;
procedure CStringCloseDir (Dir: Pointer);
asmname ’_p_CStringCloseDir’;

{ Returns the value of the symlink Name in a CString allocated from
the heap. Returns nil if it is no symlink or the function is not
supported. }

function ReadLink (Name: CString): CString; asmname ’_p_ReadLink’;

{ The result of the following function is a pointer to a *staticx
buffer! 7}

function CStringRealPath (Path: CString): CString;
asmname ’_p_CStringRealPath’;

{ File mode constants that are ORed for BindingType.Mode, ChMod,
CStringChMod and Stat. The values below are valid for all 0Ss
(as far as supported). If the OS uses different values, they’re
converted internally. }

const

134 The GNU Pascal Manual

fm_SetUID = 8#4000;
fm_SetGID = 8#2000;
fm_Sticky = 8#1000;
fm_UserReadable = 8#400;
fm_UserWritable = 8#200;
fm_UserExecutable = 8#100;
fm_GroupReadable = 8#40;
fm_GroupWritable = 8#20;
fm_GroupExecutable = 8#10;
fm_OthersReadable = 8#4;
fm_OthersWritable = 8#2;
fm_OthersExecutable = 8#1;

{ Constants for _p_Access() and _p_OpenHandle() }

const
MODE_EXEC =1 shl O;
MODE_WRITE 1 shl 1;
MODE_READ 1 shl 2;
MODE_FILE 1 shl 3;
MODE_DIR 1 shl 4;
MODE_SPECIAL = 1 shl 5;
MODE_SYMLINK = 1 shl 6;
MODE_CREATE 1 shl 7;
MODE_TRUNCATE = 1 shl 8;
MODE_BINARY = 1 shl 9;

{ Check if a file name is accessible. 7}
function Access (Name: CString; Request: Integer): Integer;
asmname ’_p_Access’;

{ Get information about a file. Any argument except Name can be
Null. }

function Stat (Name: CString; var Size: FileSizeType;
var ATime: UnixTimeType; var MTime: UnixTimeType; var CTime:
UnixTimeType;
var User: Integer; var Group: Integer; var Mode: Integer; var
Device: Integer; var INode: Integer; var Links: Integer;
var SymLink: Boolean; var Dir: Boolean; var Special: Boolean):
Integer; asmname ’_p_Stat’;

function OpenHandle (Name: CString; Mode: Integer): Integer;
asmname ’_p_OpenHandle’;

function ReadHandle (Handle: Integer; Buffer: Pointer; Size:
SizeType): SignedSizeType; asmname ’_p_ReadHandle’;

function WriteHandle (Handle: Integer; Buffer: Pointer; Size:
SizeType): SignedSizeType; asmname ’_p_WriteHandle’;

function CloseHandle (Handle: Integer): Integer;
asmname ’_p_CloseHandle’;

procedure FlushHandle (Handle: Integer); asmname ’_p_FlushHandle’;

function CStringRename (OldName: CString; NewName: CString):
Integer; asmname ’_p_CStringRename’;

function CStringUnlink (Name: CString): Integer;

Chapter 7: The Programmer’s Guide to GPC 135

asmname ’_p_CStringUnlink’;

function CStringChDir (Name: CString): Integer;
asmname ’_p_CStringChDir’;

function CStringMkDir (Name: CString): Integer;
asmname ’_p_CStringMkDir’;

function CStringRmDir (Name: CString): Integer;
asmname ’_p_CStringRmDir’;

function CStringChMod (Name: CString; Mode: Integer): Integer;
asmname ’_p_CStringChMod’;

function CStringChOwn (Name: CString; Owner: Integer; Group:
Integer): Integer; asmname ’_p_CStringChQOwn’;

function CStringUTime (Name: CString; AccessTime: UnixTimeType;
ModificationTime: UnixTimeType): Integer;
asmname ’_p_CStringUTime’;

function SeekHandle (Handle: Integer; Offset: FileSizeType; Whence:
Integer): FileSizeType; asmname ’_p_SeekHandle’;

function TruncateHandle (Handle: Integer; Size: FileSizeType):
Integer; asmname ’_p_TruncateHandle’;

function LockHandle (Handle: Integer; WriteLock: Boolean; Block:
Boolean): Boolean; asmname ’_p_LockHandle’;

function UnlockHandle (Handle: Integer): Boolean;
asmname ’_p_UnlockHandle’;

function SelectHandle (Count: Integer; var Events:
InternalSelectType; MicroSeconds: MicroSecondTimeType): Integer;
asmname ’_p_SelectHandle’;

{ Constants for MMapHandle and MemoryMap }

const
mm_Readable =1;
mm_Writable = 2;
mm_Executable = 4;

{ Try to map (a part of) a file to memory. }

function MMapHandle (Start: Pointer; Length: SizeType; Access:
Integer; Shared: Boolean; Handle: Integer; Offset: FileSizeType):
Pointer; asmname ’_p_MMapHandle’;

{ Unmap a previous memory mapping. }
function MUnMapHandle (Start: Pointer; Length: SizeType): Integer;
asmname ’_p_MUnMapHandle’;

{ Returns the file name of the terminal device that is open on
Handle. Returns nil if (and only if) Handle is not open or not
connected to a terminal. If NeedName is False, it doesn’t bother
to search for the real name and just returns DefaultName if it
is a terminal and nil otherwise. DefaultName is also returned if
NeedName is True, Handle is connected to a terminal, but the
system does not provide information about the real file name. }

function GetTerminalNameHandle (Handle: Integer; NeedName: Boolean;
DefaultName: CString): CString;
asmname ’_p_GetTerminalNameHandle’;

136

The GNU Pascal Manual

{ I/0 routines }

{ Sets the process group of Process (or the current one if Process
is 0) to ProcessGroup (or its PID if ProcessGroup is 0). Returns
True if successful. }

function SetProcessGroup (Process: Integer; ProcessGroup: Integer):
Boolean; asmname ’_p_SetProcessGroup’;

{ Sets the process group of a terminal given by Terminal (as a file
handle) to ProcessGroup. ProcessGroup must be the ID of a process
group in the same session. Returns True if successful. }

function SetTerminalProcessGroup (Handle: Integer; ProcessGroup:
Integer): Boolean; asmname ’_p_SetTerminalProcessGroup’;

{ Returns the process group of a terminal given by Terminal (as a
file handle), or -1 on error. }

function GetTerminalProcessGroup (Handle: Integer): Integer;
asmname ’_p_GetTerminalProcessGroup’;

{ Set the standard input’s signal generation, if it is a terminal. }
procedure SetInputSignals (Signals: Boolean);
asmname ’_p_SetInputSignals’;

{ Get the standard input’s signal generation, if it is a terminal. }
function GetInputSignals: Boolean; asmname ’_p_GetInputSignals’;

{ Internal routines }

{ Returns system information if available. Fields not available will
be set to nil. }

procedure CStringSystemInfo (var SysName: CString; var NodeName:
CString; var Release: CString; var Version: CString; var Machine:
CString; var DomainName: CString); asmname ’_p_CStringSystemInfo’;

{ Returns the path of the running executable *if possible*. }
function CStringExecutablePath (Buffer: CString): CString;
asmname ’_p_CStringExecutablePath’;

{ Sets ErrNo to the value of ‘errno’ and returns the description
for this error. May return nil if not supported! ErrNo may be
Null (then only the description is returned). }

function CStringStrError (var ErrNo: Integer): CString;
asmname ’_p_CStringStrError’;

{ File routines }

type
TOpenMode = (fo_None, fo_Reset, fo_Rewrite, fo_Append,
fo_SeekRead, fo_SeekWrite, fo_SeekUpdate);
AnyFile = Text; { @@ create ‘AnyFile’ parameters }

Chapter 7: The Programmer’s Guide to GPC

PAnyFile = "AnyFile;

procedure GetBinding (protected var aFile: AnyFile; var aBinding:
BindingType); asmname ’_p_binding’;

procedure ClearBinding (var aBinding: BindingType) ;
asmname ’_p_clearbinding’;

{ TFDD interface @@ Subject to change! Use with caution! }

type
TOpenProc = procedure (var PrivateData; Mode: TOpenMode) ;
TSelectFunc = function (var PrivateData; Writing: Boolean):

Integer; { called before SelectHandle, must return a file handle
}

TSelectProc = procedure (var PrivateData; var ReadSelect,
WriteSelect, ExceptSelect: Boolean); { called before and after
SelectHandle }

TReadFunc = function (var PrivateData; var Buffer; Size:
SizeType): SizeType;

TWriteFunc = function (var PrivateData; const Buffer; Size:
SizeType): SizeType;

TFileProc = procedure (var PrivateData);

TFlushProc = TFileProc;

TCloseProc = TFileProc;

TDoneProc = TFileProc;

procedure AssignTFDD (var f: AnyFile;
OpenProc : TOpenProc;
SelectFunc : TSelectFunc;
SelectProc : TSelectProc;

ReadFunc : TReadFunc;
WriteFunc : TWriteFunc;
FlushProc : TFlushProc;
CloseProc : TCloseProc;
DoneProc : TDoneProc;

PrivateData: Pointer);
asmname ’_p_assign_tfdd’;

procedure SetTFDD (var f: AnyFile;
OpenProc : TOpenProc;
SelectFunc : TSelectFunc;
SelectProc : TSelectProc;

ReadFunc : TReadFunc;
WriteFunc : TWriteFunc;
FlushProc : TFlushProc;
CloseProc : TCloseProc;
DoneProc : TDoneProc;

PrivateData: Pointer); asmname ’_p_set_tfdd’;

{ Any parameter except f may be Null }
procedure GetTFDD (var f: AnyFile;

137

138

The GNU Pascal Manual

var OpenProc : TOpenProc;
var SelectFunc : TSelectFunc;
var SelectProc : TSelectProc;

var ReadFunc : TReadFunc;
var WriteFunc : TWriteFunc;
var FlushProc : TFlushProc;
var CloseProc : TCloseProc;
var DoneProc : TDoneProc;

var PrivateData: Pointer);
asmname ’_p_get_tfdd’;

@@ iocritical } procedure FileMove (var f: AnyFile; NewName:
CString; Overwrite: Boolean); asmname ’_p_mv’;

Flags that can be ORed into FileMode. The default value of
FileMode is FileMode_Reset_ReadWrite. The somewhat confusing
values are meant to be compatible to BP (as far as BP supports
them). }

const

{ Allow writing to binary files opened with Reset }
FileMode_Reset_ReadWrite = 2;

{ Do not allow reading from files opened with Rewrite }
FileMode_Rewrite_WriteOnly = 4;

{ Do not allow reading from files opened with Extend }
FileMode_Extend_WriteOnly = 8;

{ Allow writing to text files opened with Reset }
FileMode_Text_Reset_ReadWrite = $100;

type
TextFile = Text;
const
NoChange = -1; { can be passed to ChOwn for Owner and/or Group to

not change that value }

procedure CloseFile (var aFile: { @@ AnyFile } File);

{
{

asmname ’_p_close’;

@@ IO critical } procedure ChMod (var aFile: AnyFile; Mode:
Integer); asmname ’_p_chmod’;

@@ IO critical } procedure ChOwn (var aFile: AnyFile; Owner,
Group: Integer); asmname ’_p_chown’;

Checks if data are available to be read from aFile. This is

similar to ‘not EOF (aFile)’, but does not block on "files" that

can grow, like TTYs or pipes. 7}

function CanRead (var aFile: AnyFile): Boolean;

asmname ’_p_canread’;

Chapter 7: The Programmer’s Guide to GPC 139

{ Get the file handle. }
function FileHandle (protected var aFile: AnyFile): Integer;
asmname ’_p_filehandle’;

{ Lock files }

function FileLock (var aFile: AnyFile; WriteLock, Block:
Boolean): Boolean; asmname ’_p_filelock’;

function FileUnlock (var aFile: AnyFile): Boolean;
asmname ’_p_fileunlock’;

{ Try to map (a part of) a file to memory. }
function MemoryMap (Start: Pointer; Length: SizeType; Access:
Integer; Shared: Boolean;
var aFile: AnyFile; Offset: FileSizeType):
Pointer; asmname ’_p_mmap’;

{ Unmap a previous memory mapping. }
procedure MemoryUnMap (Start: Pointer; Length: SizeType);
asmname ’_p_munmap’;

{ Mathematical routines, from math.pas }

function Lni1Plus (x: Real): Real; attribute (const);
asmname ’_p_LnlPlus’;

{ String handling routines (lower level), from string.pas }

{ TString is a string type that is used for function results and
local variables, as long as undiscriminated strings are not
allowed there. The default size of 2048 characters should be
enough for file names on any system, but can be changed when
necessary. It should be at least as big as MAXPATHLEN. }

const
TStringSize = 2048;
SpaceCharacters = [’ °, #9];
NewLine = "\n"; { the separator of lines within a string }

LineBreak = {$if defined (__0S_DOS__) and not defined
(__CYGWIN__)}

||\r\nn
{$else}
n \nll
{$endif}; { the separator of lines within a file }
type
TString = String (TStringSize);
TStringBuf = packed array [0 .. TStringSize] of Char;
PString = "String;
CharSet = set of Char;

var

140

The GNU Pascal Manual

CParamCount: Integer; asmname ’_p_argc’; external;
CParameters: PCStrings; asmname ’_p_argv’; external;

function
asmname

function
asmname

function
asmname

procedure
asmname
procedure
asmname
function
asmname
function
asmname

function
asmname

function
asmname
function
asmname
function
asmname
function
asmname
function

Integer;

function

function

function

function

Pos (const SubString, s: String): Integer;

’_p_pos’;

LastPos (const SubString, s: String): Integer;

’_p_lastpos’;

PosCase (const SubString, s: String): Integer;

’_p_poscase’;

LastPosCase (const SubString, s: String): Integer;

’_p_lastposcase’;

CharPos (const Chars: CharSet; const s: String):

asmname ’_p_charpos’;

LastCharPos (const Chars: CharSet; const s: String):
Integer; asmname ’_p_lastcharpos’;

PosFrom (const SubString, s: String; From:
Integer): Integer; asmname ’_p_posfrom’;

LastPosTill (const SubString, s: String; Till:
Integer): Integer; asmname ’_p_lastpostill’;

PosFromCase (const SubString, s: String; From:
Integer): Integer; asmname ’_p_posfromcase’;

function LastPosTillCase (const SubString, s: String; Till:

MemCmp (const si,
’memcmp’ ;

MemComp (const si,
’memcmp’ ;

MemCompCase (const si,
’_p_memcmpcase’;
UpCaseString (var s:
’_p_upcase_string’;
LoCaseString (var s:
’_p_locase_string’;
UpCaseStr (const
’_p_upcase_str’;
LoCaseStr (const

’_p_locase_str’;

StrEqualCase (const
’_p_strequalcase’;

s2; Size: SizeType): Integer;
s2; Size: SizeType): Integer;
s2; Size: SizeType): Boolean;
String) ;

String);

s: String): TString;

s: String): TString;

s1, s2: String): Boolean;

Integer): Integer; asmname ’_p_lastpostillcase’;

function

CharPosFrom (const

Chars: CharSet; const s: String;

From: Integer): Integer; asmname ’_p_charposfrom’;

function LastCharPosTill (const Chars: CharSet; const s:

String;

Till: Integer): Integer; asmname ’_p_lastcharpostill’;

function
asmname
function

IsPrefix (const
’_p_isprefix’;
IsSuffix (const

Prefix, s: String): Boolean;

Suffix, s: String): Boolean;

Chapter 7: The Programmer’s Guide to GPC

asmname ’_p_issuffix’;

function IsPrefixCase (const Prefix, s: String): Boolean;
asmname ’_p_isprefixcase’;

function IsSuffixCase (const Suffix, s: String): Boolean;
asmname ’_p_issuffixcase’;

function CStringlength (Src: CString): SizeType;
asmname ’_p_strlen’;

function CStringEnd (S8rc: CString): CString;
asmname ’_p_strend’;

function CStringNew (S8rc: CString): CString;
asmname ’_p_strdup’;

function CStringComp (s1l, s2: CString): Integer;
asmname ’_p_strcmp’;

function CStringCaseComp (s1, s2: CString): Integer;
asmname ’_p_strcasecmp’;

function CStringlComp (s1, s2: CString; MaxLen: SizeType):
Integer; asmname ’_p_strlcmp’;

function CStringLCaseComp (s1, s2: CString; MaxLen: SizeType):
Integer; asmname ’_p_strlcasecmp’;

function CStringCopy (Dest, Source: CString): CString;
asmname ’_p_strcpy’;

function CStringCopyEnd (Dest, Source: CString): CString;
asmname ’_p_strecpy’;

function CStringLCopy (Dest, Source: CString; MaxLen:
SizeType): CString; asmname ’_p_strlcpy’;

function CStringMove (Dest, Source: CString; Count:
SizeType): CString; asmname ’_p_strmove’;

function CStringCat (Dest, Source: CString): CString;
asmname ’_p_strcat’;

function CStringlCat (Dest, Source: CString; MaxLen:
SizeType): CString; asmname ’_p_strlcat’;

function CStringChPos (Src: CString; Ch: Char): CString;
asmname ’_p_strscan’;

function CStringlastChPos (Src: CString; Ch: Char): CString;
asmname ’_p_strrscan’;

function CStringPos (s, SubString: CString): CString;
asmname ’_p_strpos’;

function CStringlastPos (s, SubString: CString): CString;
asmname ’_p_strrpos’;

function CStringCasePos (s, SubString: CString): CString;
asmname ’_p_strcasepos’;

function CStringlastCasePos (s, SubString: CString): CString;
asmname ’_p_strrcasepos’;

function CStringUpCase (s: CString): CString;
asmname ’_p_strupper’;

function CStringloCase (s: CString): CString;
asmname ’_p_strlower’;

function CStringIsEmpty (s: CString): Boolean;
asmname ’_p_strempty’;

function NewCString (const Source: String): CString;

141

142 The GNU Pascal Manual

asmname ’_p_newcstring’;

function CStringCopyString (Dest: CString; const Source: String):
CString; asmname ’_p_cstringcopystring’;

procedure CopyCString (Source: CString; var Dest: String);
asmname ’_p_copycstring’;

function NewString (const s: String): PString;
asmname ’_p_newstring’;
procedure DisposeString (p: PString); asmname ’_p_dispose’;

procedure SetString (var s: String; Buffer: PChar; Count:
Integer); asmname ’_p_set_string’;

function String0fChar (Ch: Char; Count: Integer) = s: TString;
asmname ’_p_string_of_char’;

procedure TrimLeft (var s: String); asmname ’_p_trimleft’;
procedure TrimRight (var s: String); asmname ’_p_trimright’;
procedure TrimBoth (var s: String); asmname ’_p_trimboth’;
function LTrim (const s: String): TString;

asmname ’_p_trimleft_str’;
function TrimLeftStr (const s: String): TString;

asmname ’_p_trimleft_str’;
function TrimRightStr (const s: String): TString;

asmname ’_p_trimright_str’;
function TrimBothStr (const s: String): TString;

asmname ’_p_trimboth_str’;

function GetStringCapacity (const s: String): Integer;
asmname ’_p_get_string_capacity’;

{ A shortcut for a common use of WriteStr as a function }
function Integer2String (i: Integer): TString;

asmname ’_p_Integer2String’;

{ String handling routines (higher level), from string2.pas }

type
TChars = packed array [1 .. 1] of Char;
PChars = “TChars;

{ Under development. Interface subject to change.
Use with caution. 7}

{ When a const or var AnyString parameter is passed, internally
these records are passed as const parameters. Value AnyString
parameters are passed like value string parameters. }

ConstAnyString = record
Length: Integer;

Chars: PChars
end;

{ Capacity is the allocated space (used internally). Count is the

Chapter 7: The Programmer’s Guide to GPC 143

actual number of environment strings. The CStrings array
contains the environment strings, terminated by a nil pointer,
which is not counted in Count. @CStrings can be passed to libc
routines like execve which expect an environment (see
GetCEnvironment) . 7

PEnvironment = “TEnvironment;

TEnvironment (Capacity: Integer) = record
Count: Integer;
CStrings: array [1 .. Capacity + 1] of CString

end;

var
Environment: PEnvironment; asmname ’_p_environment’; external;

{ Get an environment variable. If it does not exist, GetEnv returns
the empty string, which can’t be distinguished from a variable
with an empty value, while CStringGetEnv returns nil then. Note,
Dos doesn’t know empty environment variables, but treats them as
non-existing, and does not distinguish case in the names of
environment variables. However, even under Dos, empty environment
variables and variable names with different case can now be set
and used within GPC programs. 7}

function GetEnv (const EnvVar: String): TString;
asmname ’_p_getenv’;

function CStringGetEnv (EnvVar: CString): CString;
asmname ’_p_cstringgetenv’;

{ Sets an environment variable with the name given in VarName to the
value Value. A previous value, if any, is overwritten. }

procedure SetEnv (const VarName, Value: String);
asmname ’_p_setenv’;

{ Un-sets an environment variable with the name given in VarName. }
procedure UnSetEnv (const VarName: String); asmname ’_p_unsetenv’;

{ Returns @Environment~.CStrings, converted to PCStrings, to be
passed to libc routines like execve which expect an environment. }
function GetCEnvironment: PCStrings; asmname ’_p_getcenvironment’;

type
FormatStringTransformType = “function (const Format: String):
TString;

var
FormatStringTransformPtr: FormatStringTransformType;
asmname ’_p_FormatStringTransformPtr’; external;

{ Runtime error and signal handling routines, from error.pas 7}

const
EAssert = 381;

144

The GNU Pascal Manual

EOpen = 405;

EOpenRead = 442;
EQOpenWrite = 443;
EOpenUpdate = 444;
EReading = 464;
EWriting = 466;

ERead = 413;

EWrite = 414;
EWriteReadOnly = 422;
EMMap = 408;
ECannotFork = 600;
ECannotSpawn = 601;
EProgramNotFound = 602;
EProgramNotExecutable = 603;
EPipe = 604;
EPrinterRead = 610;
EIOCtl = 630;
EConvertError = 875;
ELibraryFunction = 952;
EExitReturned = 953;

RuntimeErrorExitValue = 42;

DummyReturnAddress = Pointer ($deadbeef);

var

{ Error number (after runtime error) or exit status (after Halt)
or 0 (during program run and after succesful termination). }
ExitCode: Integer; asmname ’_p_ExitCode’; external;

{ Contains the address of the code where a runtime occurred, nil
if no runtime error occurred. }
ErrorAddr: Pointer; asmname ’_p_ErrorAddr’; external;

{ Error message }
ErrorMessageString: TString; asmname ’_p_ErrorMessageString’;
external;

{ String parameter to some error messages, *not* the text of the
error message (the latter can be obtained with
GetErrorMessage) . 7}

InOutResString: PString; asmname ’_p_InQutResString’; external;

{ Optional libc error string to some error messages. 1}
InOutResCErrorString: PString; asmname ’_p_InOutResCErrorString’;
external;

RTSErrorFD: Integer; asmname ’_p_ErrorFD’; external;
RTSErrorFileName: PString; asmname ’_p_ErrorFileName’; external;

function GetErrorMessage (n: Integer): CString;

Chapter 7: The Programmer’s Guide to GPC 145

asmname ’_p_errmsg’;

procedure RuntimeError (n: Integer);
attribute (noreturn); asmname ’_p_error’;

procedure RuntimeErrorErrNo (n: Integer);
attribute (noreturn); asmname ’_p_error_errno’;

procedure RuntimeErrorInteger (n: Integer; i: MedInt);
attribute (noreturn); asmname ’_p_error_integer’;

procedure RuntimeErrorCString (n: Integer; s: CString);
attribute (noreturn); asmname ’_p_error_string’;

procedure InternalError (n: Integer);
attribute (noreturn); asmname ’_p_internal_error’;

procedure InternalErrorInteger (n: Integer; i: MedInt);
attribute (noreturn); asmname ’_p_internal_error_integer’;

procedure InternalErrorCString (n: Integer; s: CString);
attribute (noreturn); asmname ’_p_internal_error_string’;

procedure RuntimeWarning (Message: CString);
asmname ’_p_warning’;

procedure RuntimeWarningInteger (Message: CString; i:
MedInt); asmname ’_p_warning_integer’;

procedure RuntimeWarningCString (Message: CString; s:
CString); asmname ’_p_warning_string’;

procedure DebugStatement (const FileName: String;

Line: Integer); asmname ’_p_debug_statement’;

{ @@ iocritical } procedure IOError (n:
Integer; ErrNoFlag: Boolean); asmname ’_p_io_error’;
{ @@ iocritical } procedure IOErrorInteger (n:

Integer; i: MedInt; ErrNoFlag: Boolean);
asmname ’_p_io_error_integer’;

{ 0@ iocritical } procedure IOErrorCString (n:
Integer; s: CString; ErrNoFlag: Boolean);
asmname ’_p_io_error_cstring’;

{ @@ iocritical } procedure IOErrorFile (n:
Integer; protected var f: AnyFile; ErrNoFlag: Boolean);
asmname ’_p_io_error_file’;

function GetIOErrorMessage: TString;
asmname ’_p_get_io_error_message’;
procedure CheckInOutRes; asmname ’_p_check_inoutres’;

{ Registers a procedure to be called to restore the terminal for
another proc